Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple2 Structured version   Visualization version   GIF version

Theorem xralrple2 45350
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 13165. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xralrple2.x 𝑥𝜑
xralrple2.a (𝜑𝐴 ∈ ℝ*)
xralrple2.b (𝜑𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
xralrple2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem xralrple2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple2.x . . . . 5 𝑥𝜑
2 nfv 1914 . . . . 5 𝑥 𝐴𝐵
31, 2nfan 1899 . . . 4 𝑥(𝜑𝐴𝐵)
4 xralrple2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
6 icossxr 13393 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
7 xralrple2.b . . . . . . . 8 (𝜑𝐵 ∈ (0[,)+∞))
87ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ (0[,)+∞))
96, 8sselid 3944 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
10 1red 11175 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
11 rpre 12960 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1211adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1310, 12readdcld 11203 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
14 rge0ssre 13417 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
1514, 7sselid 3944 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
1713, 16remulcld 11204 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ)
1817rexrd 11224 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
1918adantlr 715 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
20 simplr 768 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
2115ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 1red 11175 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
2322, 11readdcld 11203 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 + 𝑥) ∈ ℝ)
2423adantl 481 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
25 0xr 11221 . . . . . . . . . . 11 0 ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
27 pnfxr 11228 . . . . . . . . . . 11 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 𝐵 ∈ (0[,)+∞))
30 icogelb 13357 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
3126, 28, 29, 30syl3anc 1373 . . . . . . . . 9 (𝐵 ∈ (0[,)+∞) → 0 ≤ 𝐵)
327, 31syl 17 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
3332ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝐵)
34 id 22 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
3522, 34ltaddrpd 13028 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 < (1 + 𝑥))
3622, 23, 35ltled 11322 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ≤ (1 + 𝑥))
3736adantl 481 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 1 ≤ (1 + 𝑥))
3821, 24, 33, 37lemulge12d 12121 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ ((1 + 𝑥) · 𝐵))
395, 9, 19, 20, 38xrletrd 13122 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4039ex 412 . . . 4 ((𝜑𝐴𝐵) → (𝑥 ∈ ℝ+𝐴 ≤ ((1 + 𝑥) · 𝐵)))
413, 40ralrimi 3235 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4241ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
434ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ∈ ℝ*)
44 id 22 . . . . . . . . . . . 12 (𝐵 = 0 → 𝐵 = 0)
45 0red 11177 . . . . . . . . . . . 12 (𝐵 = 0 → 0 ∈ ℝ)
4644, 45eqeltrd 2828 . . . . . . . . . . 11 (𝐵 = 0 → 𝐵 ∈ ℝ)
4746adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝐵 ∈ ℝ)
48 rpre 12960 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℝ)
5047, 49readdcld 11203 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ)
5150rexrd 11224 . . . . . . . 8 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5251adantll 714 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5325a1i 11 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 ∈ ℝ*)
54 1rp 12955 . . . . . . . . . . . . . 14 1 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 1 ∈ ℝ+)
56 id 22 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
57 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
5857oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((1 + 𝑥) · 𝐵) = ((1 + 1) · 𝐵))
5958breq2d 5119 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + 1) · 𝐵)))
6059rspcva 3586 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + 1) · 𝐵))
6155, 56, 60syl2anc 584 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ ((1 + 1) · 𝐵))
62 1p1e2 12306 . . . . . . . . . . . . . 14 (1 + 1) = 2
6362a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → (1 + 1) = 2)
6463oveq1d 7402 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ((1 + 1) · 𝐵) = (2 · 𝐵))
6561, 64breqtrd 5133 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ (2 · 𝐵))
6665adantr 480 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
67 simpr 484 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐵 = 0)
68 simpl 482 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
69 oveq2 7395 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 𝐵) = (2 · 0))
70 2cnd 12264 . . . . . . . . . . . . . 14 (𝐵 = 0 → 2 ∈ ℂ)
7170mul01d 11373 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 0) = 0)
7269, 71eqtrd 2764 . . . . . . . . . . . 12 (𝐵 = 0 → (2 · 𝐵) = 0)
7372adantl 481 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → (2 · 𝐵) = 0)
7468, 73breqtrd 5133 . . . . . . . . . 10 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7566, 67, 74syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7675ad4ant24 754 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
77 rpgt0 12964 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → 0 < 𝑦)
7877adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < 𝑦)
79 oveq1 7394 . . . . . . . . . . . 12 (𝐵 = 0 → (𝐵 + 𝑦) = (0 + 𝑦))
8079adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) = (0 + 𝑦))
8148recnd 11202 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℂ)
8382addlidd 11375 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (0 + 𝑦) = 𝑦)
8480, 83eqtr2d 2765 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 = (𝐵 + 𝑦))
8578, 84breqtrd 5133 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < (𝐵 + 𝑦))
8685adantll 714 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 < (𝐵 + 𝑦))
8743, 53, 52, 76, 86xrlelttrd 13120 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 < (𝐵 + 𝑦))
8843, 52, 87xrltled 13110 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
89 simpl 482 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+))
9015adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ)
91 0red 11177 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ∈ ℝ)
9232adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ≤ 𝐵)
9344necon3bi 2951 . . . . . . . . . . 11 𝐵 = 0 → 𝐵 ≠ 0)
9493adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ≠ 0)
9591, 90, 92, 94leneltd 11328 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 < 𝐵)
9690, 95elrpd 12992 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
9796ad4ant14 752 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
98 simplr 768 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ+)
99 simpr 484 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10098, 99rpdivcld 13012 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ+)
101 simpll 766 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
102 oveq2 7395 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐵) → (1 + 𝑥) = (1 + (𝑦 / 𝐵)))
103102oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐵) → ((1 + 𝑥) · 𝐵) = ((1 + (𝑦 / 𝐵)) · 𝐵))
104103breq2d 5119 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐵) → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵)))
105104rspcva 3586 . . . . . . . . . 10 (((𝑦 / 𝐵) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
106100, 101, 105syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
107106adantlll 718 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
108 1cnd 11169 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 1 ∈ ℂ)
10981adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝑦 ∈ ℂ)
110 rpcn 12962 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
111110adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
112 rpne0 12968 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
113112adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
114109, 111, 113divcld 11958 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℂ)
115108, 114, 111adddird 11199 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)))
116111mullidd 11192 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (1 · 𝐵) = 𝐵)
117109, 111, 113divcan1d 11959 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((𝑦 / 𝐵) · 𝐵) = 𝑦)
118116, 117oveq12d 7405 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)) = (𝐵 + 𝑦))
119 eqidd 2730 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐵 + 𝑦) = (𝐵 + 𝑦))
120115, 118, 1193eqtrd 2768 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
121120adantll 714 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
122107, 121breqtrd 5133 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
12389, 97, 122syl2anc 584 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
12488, 123pm2.61dan 812 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
125124ralrimiva 3125 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
126 xralrple 13165 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
1274, 15, 126syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
128127adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
129125, 128mpbird 257 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴𝐵)
130129ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴𝐵))
13142, 130impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951  [,)cico 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312
This theorem is referenced by:  hoidmvlelem5  46597
  Copyright terms: Public domain W3C validator