Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple2 Structured version   Visualization version   GIF version

Theorem xralrple2 43129
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 13012. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xralrple2.x 𝑥𝜑
xralrple2.a (𝜑𝐴 ∈ ℝ*)
xralrple2.b (𝜑𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
xralrple2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem xralrple2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple2.x . . . . 5 𝑥𝜑
2 nfv 1916 . . . . 5 𝑥 𝐴𝐵
31, 2nfan 1901 . . . 4 𝑥(𝜑𝐴𝐵)
4 xralrple2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 723 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
6 icossxr 13237 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
7 xralrple2.b . . . . . . . 8 (𝜑𝐵 ∈ (0[,)+∞))
87ad2antrr 723 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ (0[,)+∞))
96, 8sselid 3929 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
10 1red 11049 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
11 rpre 12811 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1310, 12readdcld 11077 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
14 rge0ssre 13261 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
1514, 7sselid 3929 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
1713, 16remulcld 11078 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ)
1817rexrd 11098 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
1918adantlr 712 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
20 simplr 766 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
2115ad2antrr 723 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 1red 11049 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
2322, 11readdcld 11077 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 + 𝑥) ∈ ℝ)
2423adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
25 0xr 11095 . . . . . . . . . . 11 0 ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
27 pnfxr 11102 . . . . . . . . . . 11 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 𝐵 ∈ (0[,)+∞))
30 icogelb 13203 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
3126, 28, 29, 30syl3anc 1370 . . . . . . . . 9 (𝐵 ∈ (0[,)+∞) → 0 ≤ 𝐵)
327, 31syl 17 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
3332ad2antrr 723 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝐵)
34 id 22 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
3522, 34ltaddrpd 12878 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 < (1 + 𝑥))
3622, 23, 35ltled 11196 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ≤ (1 + 𝑥))
3736adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 1 ≤ (1 + 𝑥))
3821, 24, 33, 37lemulge12d 11986 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ ((1 + 𝑥) · 𝐵))
395, 9, 19, 20, 38xrletrd 12969 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4039ex 413 . . . 4 ((𝜑𝐴𝐵) → (𝑥 ∈ ℝ+𝐴 ≤ ((1 + 𝑥) · 𝐵)))
413, 40ralrimi 3237 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4241ex 413 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
434ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ∈ ℝ*)
44 id 22 . . . . . . . . . . . 12 (𝐵 = 0 → 𝐵 = 0)
45 0red 11051 . . . . . . . . . . . 12 (𝐵 = 0 → 0 ∈ ℝ)
4644, 45eqeltrd 2838 . . . . . . . . . . 11 (𝐵 = 0 → 𝐵 ∈ ℝ)
4746adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝐵 ∈ ℝ)
48 rpre 12811 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℝ)
5047, 49readdcld 11077 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ)
5150rexrd 11098 . . . . . . . 8 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5251adantll 711 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5325a1i 11 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 ∈ ℝ*)
54 1rp 12807 . . . . . . . . . . . . . 14 1 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 1 ∈ ℝ+)
56 id 22 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
57 oveq2 7323 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
5857oveq1d 7330 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((1 + 𝑥) · 𝐵) = ((1 + 1) · 𝐵))
5958breq2d 5099 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + 1) · 𝐵)))
6059rspcva 3568 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + 1) · 𝐵))
6155, 56, 60syl2anc 584 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ ((1 + 1) · 𝐵))
62 1p1e2 12171 . . . . . . . . . . . . . 14 (1 + 1) = 2
6362a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → (1 + 1) = 2)
6463oveq1d 7330 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ((1 + 1) · 𝐵) = (2 · 𝐵))
6561, 64breqtrd 5113 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ (2 · 𝐵))
6665adantr 481 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
67 simpr 485 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐵 = 0)
68 simpl 483 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
69 oveq2 7323 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 𝐵) = (2 · 0))
70 2cnd 12124 . . . . . . . . . . . . . 14 (𝐵 = 0 → 2 ∈ ℂ)
7170mul01d 11247 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 0) = 0)
7269, 71eqtrd 2777 . . . . . . . . . . . 12 (𝐵 = 0 → (2 · 𝐵) = 0)
7372adantl 482 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → (2 · 𝐵) = 0)
7468, 73breqtrd 5113 . . . . . . . . . 10 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7566, 67, 74syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7675ad4ant24 751 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
77 rpgt0 12815 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → 0 < 𝑦)
7877adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < 𝑦)
79 oveq1 7322 . . . . . . . . . . . 12 (𝐵 = 0 → (𝐵 + 𝑦) = (0 + 𝑦))
8079adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) = (0 + 𝑦))
8148recnd 11076 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
8281adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℂ)
8382addid2d 11249 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (0 + 𝑦) = 𝑦)
8480, 83eqtr2d 2778 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 = (𝐵 + 𝑦))
8578, 84breqtrd 5113 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < (𝐵 + 𝑦))
8685adantll 711 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 < (𝐵 + 𝑦))
8743, 53, 52, 76, 86xrlelttrd 12967 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 < (𝐵 + 𝑦))
8843, 52, 87xrltled 12957 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
89 simpl 483 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+))
9015adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ)
91 0red 11051 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ∈ ℝ)
9232adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ≤ 𝐵)
9344necon3bi 2968 . . . . . . . . . . 11 𝐵 = 0 → 𝐵 ≠ 0)
9493adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ≠ 0)
9591, 90, 92, 94leneltd 11202 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 < 𝐵)
9690, 95elrpd 12842 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
9796ad4ant14 749 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
98 simplr 766 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ+)
99 simpr 485 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10098, 99rpdivcld 12862 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ+)
101 simpll 764 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
102 oveq2 7323 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐵) → (1 + 𝑥) = (1 + (𝑦 / 𝐵)))
103102oveq1d 7330 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐵) → ((1 + 𝑥) · 𝐵) = ((1 + (𝑦 / 𝐵)) · 𝐵))
104103breq2d 5099 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐵) → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵)))
105104rspcva 3568 . . . . . . . . . 10 (((𝑦 / 𝐵) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
106100, 101, 105syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
107106adantlll 715 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
108 1cnd 11043 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 1 ∈ ℂ)
10981adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝑦 ∈ ℂ)
110 rpcn 12813 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
111110adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
112 rpne0 12819 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
113112adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
114109, 111, 113divcld 11824 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℂ)
115108, 114, 111adddird 11073 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)))
116111mulid2d 11066 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (1 · 𝐵) = 𝐵)
117109, 111, 113divcan1d 11825 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((𝑦 / 𝐵) · 𝐵) = 𝑦)
118116, 117oveq12d 7333 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)) = (𝐵 + 𝑦))
119 eqidd 2738 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐵 + 𝑦) = (𝐵 + 𝑦))
120115, 118, 1193eqtrd 2781 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
121120adantll 711 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
122107, 121breqtrd 5113 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
12389, 97, 122syl2anc 584 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
12488, 123pm2.61dan 810 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
125124ralrimiva 3140 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
126 xralrple 13012 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
1274, 15, 126syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
128127adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
129125, 128mpbird 256 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴𝐵)
130129ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴𝐵))
13142, 130impbid 211 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wnf 1784  wcel 2105  wne 2941  wral 3062   class class class wbr 5087  (class class class)co 7315  cc 10942  cr 10943  0cc0 10944  1c1 10945   + caddc 10947   · cmul 10949  +∞cpnf 11079  *cxr 11081   < clt 11082  cle 11083   / cdiv 11705  2c2 12101  +crp 12803  [,)cico 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-sup 9271  df-inf 9272  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-q 12762  df-rp 12804  df-ico 13158
This theorem is referenced by:  hoidmvlelem5  44375
  Copyright terms: Public domain W3C validator