Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple2 Structured version   Visualization version   GIF version

Theorem xralrple2 41506
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 12593. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xralrple2.x 𝑥𝜑
xralrple2.a (𝜑𝐴 ∈ ℝ*)
xralrple2.b (𝜑𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
xralrple2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem xralrple2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple2.x . . . . 5 𝑥𝜑
2 nfv 1908 . . . . 5 𝑥 𝐴𝐵
31, 2nfan 1893 . . . 4 𝑥(𝜑𝐴𝐵)
4 xralrple2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 722 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
6 icossxr 12816 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
7 xralrple2.b . . . . . . . 8 (𝜑𝐵 ∈ (0[,)+∞))
87ad2antrr 722 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ (0[,)+∞))
96, 8sseldi 3969 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
10 1red 10636 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
11 rpre 12392 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1310, 12readdcld 10664 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
14 rge0ssre 12839 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
1514, 7sseldi 3969 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
1713, 16remulcld 10665 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ)
1817rexrd 10685 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
1918adantlr 711 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
20 simplr 765 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
2115ad2antrr 722 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 1red 10636 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
2322, 11readdcld 10664 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 + 𝑥) ∈ ℝ)
2423adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
25 0xr 10682 . . . . . . . . . . 11 0 ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
27 pnfxr 10689 . . . . . . . . . . 11 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 𝐵 ∈ (0[,)+∞))
30 icogelb 12783 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
3126, 28, 29, 30syl3anc 1365 . . . . . . . . 9 (𝐵 ∈ (0[,)+∞) → 0 ≤ 𝐵)
327, 31syl 17 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
3332ad2antrr 722 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝐵)
34 id 22 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
3522, 34ltaddrpd 12459 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 < (1 + 𝑥))
3622, 23, 35ltled 10782 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ≤ (1 + 𝑥))
3736adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 1 ≤ (1 + 𝑥))
3821, 24, 33, 37lemulge12d 11572 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ ((1 + 𝑥) · 𝐵))
395, 9, 19, 20, 38xrletrd 12550 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4039ex 413 . . . 4 ((𝜑𝐴𝐵) → (𝑥 ∈ ℝ+𝐴 ≤ ((1 + 𝑥) · 𝐵)))
413, 40ralrimi 3221 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4241ex 413 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
434ad3antrrr 726 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ∈ ℝ*)
44 id 22 . . . . . . . . . . . 12 (𝐵 = 0 → 𝐵 = 0)
45 0red 10638 . . . . . . . . . . . 12 (𝐵 = 0 → 0 ∈ ℝ)
4644, 45eqeltrd 2918 . . . . . . . . . . 11 (𝐵 = 0 → 𝐵 ∈ ℝ)
4746adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝐵 ∈ ℝ)
48 rpre 12392 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℝ)
5047, 49readdcld 10664 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ)
5150rexrd 10685 . . . . . . . 8 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5251adantll 710 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5325a1i 11 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 ∈ ℝ*)
54 1rp 12388 . . . . . . . . . . . . . 14 1 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 1 ∈ ℝ+)
56 id 22 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
57 oveq2 7158 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
5857oveq1d 7165 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((1 + 𝑥) · 𝐵) = ((1 + 1) · 𝐵))
5958breq2d 5075 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + 1) · 𝐵)))
6059rspcva 3625 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + 1) · 𝐵))
6155, 56, 60syl2anc 584 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ ((1 + 1) · 𝐵))
62 1p1e2 11756 . . . . . . . . . . . . . 14 (1 + 1) = 2
6362a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → (1 + 1) = 2)
6463oveq1d 7165 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ((1 + 1) · 𝐵) = (2 · 𝐵))
6561, 64breqtrd 5089 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ (2 · 𝐵))
6665adantr 481 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
67 simpr 485 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐵 = 0)
68 simpl 483 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
69 oveq2 7158 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 𝐵) = (2 · 0))
70 2cnd 11709 . . . . . . . . . . . . . 14 (𝐵 = 0 → 2 ∈ ℂ)
7170mul01d 10833 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 0) = 0)
7269, 71eqtrd 2861 . . . . . . . . . . . 12 (𝐵 = 0 → (2 · 𝐵) = 0)
7372adantl 482 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → (2 · 𝐵) = 0)
7468, 73breqtrd 5089 . . . . . . . . . 10 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7566, 67, 74syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7675ad4ant24 750 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
77 rpgt0 12396 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → 0 < 𝑦)
7877adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < 𝑦)
79 oveq1 7157 . . . . . . . . . . . 12 (𝐵 = 0 → (𝐵 + 𝑦) = (0 + 𝑦))
8079adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) = (0 + 𝑦))
8148recnd 10663 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
8281adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℂ)
8382addid2d 10835 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (0 + 𝑦) = 𝑦)
8480, 83eqtr2d 2862 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 = (𝐵 + 𝑦))
8578, 84breqtrd 5089 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < (𝐵 + 𝑦))
8685adantll 710 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 < (𝐵 + 𝑦))
8743, 53, 52, 76, 86xrlelttrd 12548 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 < (𝐵 + 𝑦))
8843, 52, 87xrltled 12538 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
89 simpl 483 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+))
9015adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ)
91 0red 10638 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ∈ ℝ)
9232adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ≤ 𝐵)
9344necon3bi 3047 . . . . . . . . . . 11 𝐵 = 0 → 𝐵 ≠ 0)
9493adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ≠ 0)
9591, 90, 92, 94leneltd 10788 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 < 𝐵)
9690, 95elrpd 12423 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
9796ad4ant14 748 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
98 simplr 765 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ+)
99 simpr 485 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10098, 99rpdivcld 12443 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ+)
101 simpll 763 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
102 oveq2 7158 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐵) → (1 + 𝑥) = (1 + (𝑦 / 𝐵)))
103102oveq1d 7165 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐵) → ((1 + 𝑥) · 𝐵) = ((1 + (𝑦 / 𝐵)) · 𝐵))
104103breq2d 5075 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐵) → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵)))
105104rspcva 3625 . . . . . . . . . 10 (((𝑦 / 𝐵) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
106100, 101, 105syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
107106adantlll 714 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
108 1cnd 10630 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 1 ∈ ℂ)
10981adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝑦 ∈ ℂ)
110 rpcn 12394 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
111110adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
112 rpne0 12400 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
113112adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
114109, 111, 113divcld 11410 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℂ)
115108, 114, 111adddird 10660 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)))
116111mulid2d 10653 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (1 · 𝐵) = 𝐵)
117109, 111, 113divcan1d 11411 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((𝑦 / 𝐵) · 𝐵) = 𝑦)
118116, 117oveq12d 7168 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)) = (𝐵 + 𝑦))
119 eqidd 2827 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐵 + 𝑦) = (𝐵 + 𝑦))
120115, 118, 1193eqtrd 2865 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
121120adantll 710 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
122107, 121breqtrd 5089 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
12389, 97, 122syl2anc 584 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
12488, 123pm2.61dan 809 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
125124ralrimiva 3187 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
126 xralrple 12593 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
1274, 15, 126syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
128127adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
129125, 128mpbird 258 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴𝐵)
130129ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴𝐵))
13142, 130impbid 213 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wnf 1777  wcel 2107  wne 3021  wral 3143   class class class wbr 5063  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670   / cdiv 11291  2c2 11686  +crp 12384  [,)cico 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-ico 12739
This theorem is referenced by:  hoidmvlelem5  42766
  Copyright terms: Public domain W3C validator