Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple2 Structured version   Visualization version   GIF version

Theorem xralrple2 43578
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 13124. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xralrple2.x 𝑥𝜑
xralrple2.a (𝜑𝐴 ∈ ℝ*)
xralrple2.b (𝜑𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
xralrple2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem xralrple2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple2.x . . . . 5 𝑥𝜑
2 nfv 1917 . . . . 5 𝑥 𝐴𝐵
31, 2nfan 1902 . . . 4 𝑥(𝜑𝐴𝐵)
4 xralrple2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
6 icossxr 13349 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
7 xralrple2.b . . . . . . . 8 (𝜑𝐵 ∈ (0[,)+∞))
87ad2antrr 724 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ (0[,)+∞))
96, 8sselid 3942 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
10 1red 11156 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
11 rpre 12923 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1310, 12readdcld 11184 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
14 rge0ssre 13373 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
1514, 7sselid 3942 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
1713, 16remulcld 11185 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ)
1817rexrd 11205 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
1918adantlr 713 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
20 simplr 767 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
2115ad2antrr 724 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 1red 11156 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
2322, 11readdcld 11184 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 + 𝑥) ∈ ℝ)
2423adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
25 0xr 11202 . . . . . . . . . . 11 0 ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
27 pnfxr 11209 . . . . . . . . . . 11 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 𝐵 ∈ (0[,)+∞))
30 icogelb 13315 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
3126, 28, 29, 30syl3anc 1371 . . . . . . . . 9 (𝐵 ∈ (0[,)+∞) → 0 ≤ 𝐵)
327, 31syl 17 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
3332ad2antrr 724 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝐵)
34 id 22 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
3522, 34ltaddrpd 12990 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 < (1 + 𝑥))
3622, 23, 35ltled 11303 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ≤ (1 + 𝑥))
3736adantl 482 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 1 ≤ (1 + 𝑥))
3821, 24, 33, 37lemulge12d 12093 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ ((1 + 𝑥) · 𝐵))
395, 9, 19, 20, 38xrletrd 13081 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4039ex 413 . . . 4 ((𝜑𝐴𝐵) → (𝑥 ∈ ℝ+𝐴 ≤ ((1 + 𝑥) · 𝐵)))
413, 40ralrimi 3240 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4241ex 413 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
434ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ∈ ℝ*)
44 id 22 . . . . . . . . . . . 12 (𝐵 = 0 → 𝐵 = 0)
45 0red 11158 . . . . . . . . . . . 12 (𝐵 = 0 → 0 ∈ ℝ)
4644, 45eqeltrd 2838 . . . . . . . . . . 11 (𝐵 = 0 → 𝐵 ∈ ℝ)
4746adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝐵 ∈ ℝ)
48 rpre 12923 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℝ)
5047, 49readdcld 11184 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ)
5150rexrd 11205 . . . . . . . 8 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5251adantll 712 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5325a1i 11 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 ∈ ℝ*)
54 1rp 12919 . . . . . . . . . . . . . 14 1 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 1 ∈ ℝ+)
56 id 22 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
57 oveq2 7365 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
5857oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((1 + 𝑥) · 𝐵) = ((1 + 1) · 𝐵))
5958breq2d 5117 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + 1) · 𝐵)))
6059rspcva 3579 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + 1) · 𝐵))
6155, 56, 60syl2anc 584 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ ((1 + 1) · 𝐵))
62 1p1e2 12278 . . . . . . . . . . . . . 14 (1 + 1) = 2
6362a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → (1 + 1) = 2)
6463oveq1d 7372 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ((1 + 1) · 𝐵) = (2 · 𝐵))
6561, 64breqtrd 5131 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ (2 · 𝐵))
6665adantr 481 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
67 simpr 485 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐵 = 0)
68 simpl 483 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
69 oveq2 7365 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 𝐵) = (2 · 0))
70 2cnd 12231 . . . . . . . . . . . . . 14 (𝐵 = 0 → 2 ∈ ℂ)
7170mul01d 11354 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 0) = 0)
7269, 71eqtrd 2776 . . . . . . . . . . . 12 (𝐵 = 0 → (2 · 𝐵) = 0)
7372adantl 482 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → (2 · 𝐵) = 0)
7468, 73breqtrd 5131 . . . . . . . . . 10 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7566, 67, 74syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7675ad4ant24 752 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
77 rpgt0 12927 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → 0 < 𝑦)
7877adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < 𝑦)
79 oveq1 7364 . . . . . . . . . . . 12 (𝐵 = 0 → (𝐵 + 𝑦) = (0 + 𝑦))
8079adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) = (0 + 𝑦))
8148recnd 11183 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
8281adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℂ)
8382addid2d 11356 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (0 + 𝑦) = 𝑦)
8480, 83eqtr2d 2777 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 = (𝐵 + 𝑦))
8578, 84breqtrd 5131 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < (𝐵 + 𝑦))
8685adantll 712 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 < (𝐵 + 𝑦))
8743, 53, 52, 76, 86xrlelttrd 13079 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 < (𝐵 + 𝑦))
8843, 52, 87xrltled 13069 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
89 simpl 483 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+))
9015adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ)
91 0red 11158 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ∈ ℝ)
9232adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ≤ 𝐵)
9344necon3bi 2970 . . . . . . . . . . 11 𝐵 = 0 → 𝐵 ≠ 0)
9493adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ≠ 0)
9591, 90, 92, 94leneltd 11309 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 < 𝐵)
9690, 95elrpd 12954 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
9796ad4ant14 750 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
98 simplr 767 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ+)
99 simpr 485 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10098, 99rpdivcld 12974 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ+)
101 simpll 765 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
102 oveq2 7365 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐵) → (1 + 𝑥) = (1 + (𝑦 / 𝐵)))
103102oveq1d 7372 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐵) → ((1 + 𝑥) · 𝐵) = ((1 + (𝑦 / 𝐵)) · 𝐵))
104103breq2d 5117 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐵) → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵)))
105104rspcva 3579 . . . . . . . . . 10 (((𝑦 / 𝐵) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
106100, 101, 105syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
107106adantlll 716 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
108 1cnd 11150 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 1 ∈ ℂ)
10981adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝑦 ∈ ℂ)
110 rpcn 12925 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
111110adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
112 rpne0 12931 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
113112adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
114109, 111, 113divcld 11931 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℂ)
115108, 114, 111adddird 11180 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)))
116111mulid2d 11173 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (1 · 𝐵) = 𝐵)
117109, 111, 113divcan1d 11932 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((𝑦 / 𝐵) · 𝐵) = 𝑦)
118116, 117oveq12d 7375 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)) = (𝐵 + 𝑦))
119 eqidd 2737 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐵 + 𝑦) = (𝐵 + 𝑦))
120115, 118, 1193eqtrd 2780 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
121120adantll 712 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
122107, 121breqtrd 5131 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
12389, 97, 122syl2anc 584 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
12488, 123pm2.61dan 811 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
125124ralrimiva 3143 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
126 xralrple 13124 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
1274, 15, 126syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
128127adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
129125, 128mpbird 256 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴𝐵)
130129ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴𝐵))
13142, 130impbid 211 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  +crp 12915  [,)cico 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ico 13270
This theorem is referenced by:  hoidmvlelem5  44830
  Copyright terms: Public domain W3C validator