Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple2 Structured version   Visualization version   GIF version

Theorem xralrple2 40492
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 12353. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xralrple2.x 𝑥𝜑
xralrple2.a (𝜑𝐴 ∈ ℝ*)
xralrple2.b (𝜑𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
xralrple2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem xralrple2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple2.x . . . . 5 𝑥𝜑
2 nfv 1957 . . . . 5 𝑥 𝐴𝐵
31, 2nfan 1946 . . . 4 𝑥(𝜑𝐴𝐵)
4 xralrple2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 716 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
6 icossxr 12575 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
7 xralrple2.b . . . . . . . 8 (𝜑𝐵 ∈ (0[,)+∞))
87ad2antrr 716 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ (0[,)+∞))
96, 8sseldi 3819 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
10 1red 10379 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
11 rpre 12150 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1211adantl 475 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
1310, 12readdcld 10408 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
14 rge0ssre 12599 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
1514, 7sseldi 3819 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1615adantr 474 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
1713, 16remulcld 10409 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ)
1817rexrd 10428 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
1918adantlr 705 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → ((1 + 𝑥) · 𝐵) ∈ ℝ*)
20 simplr 759 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
2115ad2antrr 716 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 1red 10379 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
2322, 11readdcld 10408 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 + 𝑥) ∈ ℝ)
2423adantl 475 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (1 + 𝑥) ∈ ℝ)
25 0xr 10425 . . . . . . . . . . 11 0 ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*)
27 pnfxr 10432 . . . . . . . . . . 11 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . 10 (𝐵 ∈ (0[,)+∞) → 𝐵 ∈ (0[,)+∞))
30 icogelb 12542 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
3126, 28, 29, 30syl3anc 1439 . . . . . . . . 9 (𝐵 ∈ (0[,)+∞) → 0 ≤ 𝐵)
327, 31syl 17 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
3332ad2antrr 716 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝐵)
34 id 22 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
3522, 34ltaddrpd 12219 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 1 < (1 + 𝑥))
3622, 23, 35ltled 10526 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ≤ (1 + 𝑥))
3736adantl 475 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 1 ≤ (1 + 𝑥))
3821, 24, 33, 37lemulge12d 11319 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ ((1 + 𝑥) · 𝐵))
395, 9, 19, 20, 38xrletrd 12310 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4039ex 403 . . . 4 ((𝜑𝐴𝐵) → (𝑥 ∈ ℝ+𝐴 ≤ ((1 + 𝑥) · 𝐵)))
413, 40ralrimi 3139 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
4241ex 403 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
434ad3antrrr 720 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ∈ ℝ*)
44 id 22 . . . . . . . . . . . 12 (𝐵 = 0 → 𝐵 = 0)
45 0red 10382 . . . . . . . . . . . 12 (𝐵 = 0 → 0 ∈ ℝ)
4644, 45eqeltrd 2859 . . . . . . . . . . 11 (𝐵 = 0 → 𝐵 ∈ ℝ)
4746adantl 475 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝐵 ∈ ℝ)
48 rpre 12150 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantr 474 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℝ)
5047, 49readdcld 10408 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ)
5150rexrd 10428 . . . . . . . 8 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5251adantll 704 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → (𝐵 + 𝑦) ∈ ℝ*)
5325a1i 11 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 ∈ ℝ*)
54 1rp 12146 . . . . . . . . . . . . . 14 1 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 1 ∈ ℝ+)
56 id 22 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
57 oveq2 6932 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
5857oveq1d 6939 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((1 + 𝑥) · 𝐵) = ((1 + 1) · 𝐵))
5958breq2d 4900 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + 1) · 𝐵)))
6059rspcva 3509 . . . . . . . . . . . . 13 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + 1) · 𝐵))
6155, 56, 60syl2anc 579 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ ((1 + 1) · 𝐵))
62 1p1e2 11512 . . . . . . . . . . . . . 14 (1 + 1) = 2
6362a1i 11 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → (1 + 1) = 2)
6463oveq1d 6939 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → ((1 + 1) · 𝐵) = (2 · 𝐵))
6561, 64breqtrd 4914 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴 ≤ (2 · 𝐵))
6665adantr 474 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
67 simpr 479 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐵 = 0)
68 simpl 476 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ (2 · 𝐵))
69 oveq2 6932 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 𝐵) = (2 · 0))
70 2cnd 11458 . . . . . . . . . . . . . 14 (𝐵 = 0 → 2 ∈ ℂ)
7170mul01d 10577 . . . . . . . . . . . . 13 (𝐵 = 0 → (2 · 0) = 0)
7269, 71eqtrd 2814 . . . . . . . . . . . 12 (𝐵 = 0 → (2 · 𝐵) = 0)
7372adantl 475 . . . . . . . . . . 11 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → (2 · 𝐵) = 0)
7468, 73breqtrd 4914 . . . . . . . . . 10 ((𝐴 ≤ (2 · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7566, 67, 74syl2anc 579 . . . . . . . . 9 ((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
7675ad4ant24 744 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ 0)
77 rpgt0 12156 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → 0 < 𝑦)
7877adantr 474 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < 𝑦)
79 oveq1 6931 . . . . . . . . . . . 12 (𝐵 = 0 → (𝐵 + 𝑦) = (0 + 𝑦))
8079adantl 475 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (𝐵 + 𝑦) = (0 + 𝑦))
8148recnd 10407 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
8281adantr 474 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 ∈ ℂ)
8382addid2d 10579 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 = 0) → (0 + 𝑦) = 𝑦)
8480, 83eqtr2d 2815 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 = 0) → 𝑦 = (𝐵 + 𝑦))
8578, 84breqtrd 4914 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 = 0) → 0 < (𝐵 + 𝑦))
8685adantll 704 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 0 < (𝐵 + 𝑦))
8743, 53, 52, 76, 86xrlelttrd 12308 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 < (𝐵 + 𝑦))
8843, 52, 87xrltled 12298 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
89 simpl 476 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+))
9015adantr 474 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ)
91 0red 10382 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ∈ ℝ)
9232adantr 474 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 ≤ 𝐵)
9344necon3bi 2995 . . . . . . . . . . 11 𝐵 = 0 → 𝐵 ≠ 0)
9493adantl 475 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ≠ 0)
9591, 90, 92, 94leneltd 10532 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 0) → 0 < 𝐵)
9690, 95elrpd 12183 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
9796ad4ant14 742 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐵 ∈ ℝ+)
98 simplr 759 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ+)
99 simpr 479 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
10098, 99rpdivcld 12203 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ+)
101 simpll 757 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))
102 oveq2 6932 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐵) → (1 + 𝑥) = (1 + (𝑦 / 𝐵)))
103102oveq1d 6939 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐵) → ((1 + 𝑥) · 𝐵) = ((1 + (𝑦 / 𝐵)) · 𝐵))
104103breq2d 4900 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐵) → (𝐴 ≤ ((1 + 𝑥) · 𝐵) ↔ 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵)))
105104rspcva 3509 . . . . . . . . . 10 (((𝑦 / 𝐵) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
106100, 101, 105syl2anc 579 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
107106adantlll 708 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ ((1 + (𝑦 / 𝐵)) · 𝐵))
108 1cnd 10373 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 1 ∈ ℂ)
10981adantr 474 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝑦 ∈ ℂ)
110 rpcn 12154 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
111110adantl 475 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
112 rpne0 12160 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
113112adantl 475 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
114109, 111, 113divcld 11154 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℂ)
115108, 114, 111adddird 10404 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)))
116111mulid2d 10397 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (1 · 𝐵) = 𝐵)
117109, 111, 113divcan1d 11155 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((𝑦 / 𝐵) · 𝐵) = 𝑦)
118116, 117oveq12d 6942 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 · 𝐵) + ((𝑦 / 𝐵) · 𝐵)) = (𝐵 + 𝑦))
119 eqidd 2779 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐵 + 𝑦) = (𝐵 + 𝑦))
120115, 118, 1193eqtrd 2818 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
121120adantll 704 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → ((1 + (𝑦 / 𝐵)) · 𝐵) = (𝐵 + 𝑦))
122107, 121breqtrd 4914 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ 𝐵 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
12389, 97, 122syl2anc 579 . . . . . 6 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) ∧ ¬ 𝐵 = 0) → 𝐴 ≤ (𝐵 + 𝑦))
12488, 123pm2.61dan 803 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
125124ralrimiva 3148 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
126 xralrple 12353 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
1274, 15, 126syl2anc 579 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
128127adantr 474 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
129125, 128mpbird 249 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)) → 𝐴𝐵)
130129ex 403 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵) → 𝐴𝐵))
13142, 130impbid 204 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wnf 1827  wcel 2107  wne 2969  wral 3090   class class class wbr 4888  (class class class)co 6924  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279  +∞cpnf 10410  *cxr 10412   < clt 10413  cle 10414   / cdiv 11035  2c2 11435  +crp 12142  [,)cico 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-n0 11648  df-z 11734  df-uz 11998  df-q 12101  df-rp 12143  df-ico 12498
This theorem is referenced by:  hoidmvlelem5  41754
  Copyright terms: Public domain W3C validator