MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimcrng Structured version   Visualization version   GIF version

Theorem mat1dimcrng 22371
Description: The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimcrng ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)

Proof of Theorem mat1dimcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9017 . . 3 {𝐸} ∈ Fin
2 crngring 20161 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
4 mat1dim.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
54matring 22337 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
61, 3, 5sylancr 587 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
7 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
8 mat1dim.o . . . . . . 7 𝑂 = ⟨𝐸, 𝐸
94, 7, 8mat1dimelbas 22365 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ (Base‘𝐴) ↔ ∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩}))
104, 7, 8mat1dimelbas 22365 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑦 ∈ (Base‘𝐴) ↔ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}))
119, 10anbi12d 632 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
122, 11sylan 580 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
13 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ CRing)
14 simprl 770 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
15 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
16 eqid 2730 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
177, 16crngcom 20167 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1813, 14, 15, 17syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1918opeq2d 4847 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ⟨𝑂, (𝑎(.r𝑅)𝑏)⟩ = ⟨𝑂, (𝑏(.r𝑅)𝑎)⟩)
2019sneqd 4604 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩} = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
212anim1i 615 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (𝑅 ∈ Ring ∧ 𝐸𝑉))
224, 7, 8mat1dimmul 22370 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
2321, 22sylan 580 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
24 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝑏𝐵𝑎𝐵))
254, 7, 8mat1dimmul 22370 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑏𝐵𝑎𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2621, 24, 25syl2an 596 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2720, 23, 263eqtr4d 2775 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
2827expr 456 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
2928adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3029imp 406 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3130adantr 480 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
32 oveq12 7399 . . . . . . . . 9 ((𝑥 = {⟨𝑂, 𝑎⟩} ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
3332ad4ant24 754 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
34 oveq12 7399 . . . . . . . . . . 11 ((𝑦 = {⟨𝑂, 𝑏⟩} ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3534expcom 413 . . . . . . . . . 10 (𝑥 = {⟨𝑂, 𝑎⟩} → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3635ad2antlr 727 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3736imp 406 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3831, 33, 373eqtr4d 2775 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938rexlimdva2 3137 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4039rexlimdva2 3137 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))))
4140impd 410 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4212, 41sylbid 240 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4342ralrimivv 3179 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
44 eqid 2730 . . 3 (Base‘𝐴) = (Base‘𝐴)
45 eqid 2730 . . 3 (.r𝐴) = (.r𝐴)
4644, 45iscrng2 20168 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
476, 43, 46sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {csn 4592  cop 4598  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  .rcmulr 17228  Ringcrg 20149  CRingccrg 20150   Mat cmat 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator