Step | Hyp | Ref
| Expression |
1 | | snfi 9044 |
. . 3
⊢ {𝐸} ∈ Fin |
2 | | crngring 20068 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
3 | 2 | adantr 482 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) |
4 | | mat1dim.a |
. . . 4
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
5 | 4 | matring 21945 |
. . 3
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
6 | 1, 3, 5 | sylancr 588 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ Ring) |
7 | | mat1dim.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
8 | | mat1dim.o |
. . . . . . 7
⊢ 𝑂 = ⟨𝐸, 𝐸⟩ |
9 | 4, 7, 8 | mat1dimelbas 21973 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ (Base‘𝐴) ↔ ∃𝑎 ∈ 𝐵 𝑥 = {⟨𝑂, 𝑎⟩})) |
10 | 4, 7, 8 | mat1dimelbas 21973 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑦 ∈ (Base‘𝐴) ↔ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩})) |
11 | 9, 10 | anbi12d 632 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎 ∈ 𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩}))) |
12 | 2, 11 | sylan 581 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎 ∈ 𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩}))) |
13 | | simpll 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ CRing) |
14 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
15 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
16 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑅) = (.r‘𝑅) |
17 | 7, 16 | crngcom 20074 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ CRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(.r‘𝑅)𝑏) = (𝑏(.r‘𝑅)𝑎)) |
18 | 13, 14, 15, 17 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(.r‘𝑅)𝑏) = (𝑏(.r‘𝑅)𝑎)) |
19 | 18 | opeq2d 4881 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ⟨𝑂, (𝑎(.r‘𝑅)𝑏)⟩ = ⟨𝑂, (𝑏(.r‘𝑅)𝑎)⟩) |
20 | 19 | sneqd 4641 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → {⟨𝑂, (𝑎(.r‘𝑅)𝑏)⟩} = {⟨𝑂, (𝑏(.r‘𝑅)𝑎)⟩}) |
21 | 2 | anim1i 616 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → (𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉)) |
22 | 4, 7, 8 | mat1dimmul 21978 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r‘𝑅)𝑏)⟩}) |
23 | 21, 22 | sylan 581 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r‘𝑅)𝑏)⟩}) |
24 | | pm3.22 461 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵)) |
25 | 4, 7, 8 | mat1dimmul 21978 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑏 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵)) → ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r‘𝑅)𝑎)⟩}) |
26 | 21, 24, 25 | syl2an 597 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r‘𝑅)𝑎)⟩}) |
27 | 20, 23, 26 | 3eqtr4d 2783 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩})) |
28 | 27 | expr 458 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) → (𝑏 ∈ 𝐵 → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}))) |
29 | 28 | adantr 482 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑏 ∈ 𝐵 → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}))) |
30 | 29 | imp 408 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩})) |
31 | 30 | adantr 482 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩})) |
32 | | oveq12 7418 |
. . . . . . . . 9
⊢ ((𝑥 = {⟨𝑂, 𝑎⟩} ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r‘𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩})) |
33 | 32 | ad4ant24 753 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r‘𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r‘𝐴){⟨𝑂, 𝑏⟩})) |
34 | | oveq12 7418 |
. . . . . . . . . . 11
⊢ ((𝑦 = {⟨𝑂, 𝑏⟩} ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑦(.r‘𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩})) |
35 | 34 | expcom 415 |
. . . . . . . . . 10
⊢ (𝑥 = {⟨𝑂, 𝑎⟩} → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r‘𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}))) |
36 | 35 | ad2antlr 726 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r‘𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩}))) |
37 | 36 | imp 408 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑦(.r‘𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r‘𝐴){⟨𝑂, 𝑎⟩})) |
38 | 31, 33, 37 | 3eqtr4d 2783 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
39 | 38 | rexlimdva2 3158 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
40 | 39 | rexlimdva2 3158 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → (∃𝑎 ∈ 𝐵 𝑥 = {⟨𝑂, 𝑎⟩} → (∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)))) |
41 | 40 | impd 412 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → ((∃𝑎 ∈ 𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
42 | 12, 41 | sylbid 239 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
43 | 42 | ralrimivv 3199 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
44 | | eqid 2733 |
. . 3
⊢
(Base‘𝐴) =
(Base‘𝐴) |
45 | | eqid 2733 |
. . 3
⊢
(.r‘𝐴) = (.r‘𝐴) |
46 | 44, 45 | iscrng2 20075 |
. 2
⊢ (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
47 | 6, 43, 46 | sylanbrc 584 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ CRing) |