MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimcrng Structured version   Visualization version   GIF version

Theorem mat1dimcrng 22392
Description: The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimcrng ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)

Proof of Theorem mat1dimcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8965 . . 3 {𝐸} ∈ Fin
2 crngring 20163 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
4 mat1dim.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
54matring 22358 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
61, 3, 5sylancr 587 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
7 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
8 mat1dim.o . . . . . . 7 𝑂 = ⟨𝐸, 𝐸
94, 7, 8mat1dimelbas 22386 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ (Base‘𝐴) ↔ ∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩}))
104, 7, 8mat1dimelbas 22386 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑦 ∈ (Base‘𝐴) ↔ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}))
119, 10anbi12d 632 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
122, 11sylan 580 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) ↔ (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩})))
13 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ CRing)
14 simprl 770 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
15 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
16 eqid 2731 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
177, 16crngcom 20169 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1813, 14, 15, 17syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
1918opeq2d 4829 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ⟨𝑂, (𝑎(.r𝑅)𝑏)⟩ = ⟨𝑂, (𝑏(.r𝑅)𝑎)⟩)
2019sneqd 4585 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩} = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
212anim1i 615 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (𝑅 ∈ Ring ∧ 𝐸𝑉))
224, 7, 8mat1dimmul 22391 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
2321, 22sylan 580 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = {⟨𝑂, (𝑎(.r𝑅)𝑏)⟩})
24 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝑏𝐵𝑎𝐵))
254, 7, 8mat1dimmul 22391 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑏𝐵𝑎𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2621, 24, 25syl2an 596 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}) = {⟨𝑂, (𝑏(.r𝑅)𝑎)⟩})
2720, 23, 263eqtr4d 2776 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ (𝑎𝐵𝑏𝐵)) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
2827expr 456 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
2928adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑏𝐵 → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3029imp 406 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3130adantr 480 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
32 oveq12 7355 . . . . . . . . 9 ((𝑥 = {⟨𝑂, 𝑎⟩} ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
3332ad4ant24 754 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = ({⟨𝑂, 𝑎⟩} (.r𝐴){⟨𝑂, 𝑏⟩}))
34 oveq12 7355 . . . . . . . . . . 11 ((𝑦 = {⟨𝑂, 𝑏⟩} ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3534expcom 413 . . . . . . . . . 10 (𝑥 = {⟨𝑂, 𝑎⟩} → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3635ad2antlr 727 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) → (𝑦 = {⟨𝑂, 𝑏⟩} → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩})))
3736imp 406 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑦(.r𝐴)𝑥) = ({⟨𝑂, 𝑏⟩} (.r𝐴){⟨𝑂, 𝑎⟩}))
3831, 33, 373eqtr4d 2776 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) ∧ 𝑏𝐵) ∧ 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938rexlimdva2 3135 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐸𝑉) ∧ 𝑎𝐵) ∧ 𝑥 = {⟨𝑂, 𝑎⟩}) → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4039rexlimdva2 3135 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → (∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩} → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))))
4140impd 410 . . . 4 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((∃𝑎𝐵 𝑥 = {⟨𝑂, 𝑎⟩} ∧ ∃𝑏𝐵 𝑦 = {⟨𝑂, 𝑏⟩}) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4212, 41sylbid 240 . . 3 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4342ralrimivv 3173 . 2 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
44 eqid 2731 . . 3 (Base‘𝐴) = (Base‘𝐴)
45 eqid 2731 . . 3 (.r𝐴) = (.r𝐴)
4644, 45iscrng2 20170 . 2 (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
476, 43, 46sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝐸𝑉) → 𝐴 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {csn 4573  cop 4579  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  .rcmulr 17162  Ringcrg 20151  CRingccrg 20152   Mat cmat 22322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mamu 22306  df-mat 22323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator