![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglowdim1i | Structured version Visualization version GIF version |
Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
Ref | Expression |
---|---|
tglowdim1.p | β’ π = (BaseβπΊ) |
tglowdim1.d | β’ β = (distβπΊ) |
tglowdim1.i | β’ πΌ = (ItvβπΊ) |
tglowdim1.g | β’ (π β πΊ β TarskiG) |
tglowdim1.1 | β’ (π β 2 β€ (β―βπ)) |
tglowdim1i.1 | β’ (π β π β π) |
Ref | Expression |
---|---|
tglowdim1i | β’ (π β βπ¦ β π π β π¦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglowdim1.p | . . . . 5 β’ π = (BaseβπΊ) | |
2 | tglowdim1.d | . . . . 5 β’ β = (distβπΊ) | |
3 | tglowdim1.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
4 | tglowdim1.g | . . . . . 6 β’ (π β πΊ β TarskiG) | |
5 | 4 | adantr 479 | . . . . 5 β’ ((π β§ βπ¦ β π π = π¦) β πΊ β TarskiG) |
6 | tglowdim1.1 | . . . . . 6 β’ (π β 2 β€ (β―βπ)) | |
7 | 6 | adantr 479 | . . . . 5 β’ ((π β§ βπ¦ β π π = π¦) β 2 β€ (β―βπ)) |
8 | 1, 2, 3, 5, 7 | tglowdim1 28346 | . . . 4 β’ ((π β§ βπ¦ β π π = π¦) β βπ β π βπ β π π β π) |
9 | eqeq2 2737 | . . . . . . . . 9 β’ (π¦ = π β (π = π¦ β π = π)) | |
10 | simpllr 774 | . . . . . . . . 9 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β βπ¦ β π π = π¦) | |
11 | simplr 767 | . . . . . . . . 9 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β π β π) | |
12 | 9, 10, 11 | rspcdva 3603 | . . . . . . . 8 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β π = π) |
13 | eqeq2 2737 | . . . . . . . . . 10 β’ (π¦ = π β (π = π¦ β π = π)) | |
14 | 13 | rspccva 3601 | . . . . . . . . 9 β’ ((βπ¦ β π π = π¦ β§ π β π) β π = π) |
15 | 14 | ad4ant24 752 | . . . . . . . 8 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β π = π) |
16 | 12, 15 | eqtr3d 2767 | . . . . . . 7 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β π = π) |
17 | nne 2934 | . . . . . . 7 β’ (Β¬ π β π β π = π) | |
18 | 16, 17 | sylibr 233 | . . . . . 6 β’ ((((π β§ βπ¦ β π π = π¦) β§ π β π) β§ π β π) β Β¬ π β π) |
19 | 18 | nrexdv 3139 | . . . . 5 β’ (((π β§ βπ¦ β π π = π¦) β§ π β π) β Β¬ βπ β π π β π) |
20 | 19 | nrexdv 3139 | . . . 4 β’ ((π β§ βπ¦ β π π = π¦) β Β¬ βπ β π βπ β π π β π) |
21 | 8, 20 | pm2.65da 815 | . . 3 β’ (π β Β¬ βπ¦ β π π = π¦) |
22 | rexnal 3090 | . . 3 β’ (βπ¦ β π Β¬ π = π¦ β Β¬ βπ¦ β π π = π¦) | |
23 | 21, 22 | sylibr 233 | . 2 β’ (π β βπ¦ β π Β¬ π = π¦) |
24 | df-ne 2931 | . . 3 β’ (π β π¦ β Β¬ π = π¦) | |
25 | 24 | rexbii 3084 | . 2 β’ (βπ¦ β π π β π¦ β βπ¦ β π Β¬ π = π¦) |
26 | 23, 25 | sylibr 233 | 1 β’ (π β βπ¦ β π π β π¦) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 βwrex 3060 class class class wbr 5143 βcfv 6542 β€ cle 11277 2c2 12295 β―chash 14319 Basecbs 17177 distcds 17239 TarskiGcstrkg 28273 Itvcitv 28279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 |
This theorem is referenced by: colline 28495 |
Copyright terms: Public domain | W3C validator |