Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglowdim1i | Structured version Visualization version GIF version |
Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
Ref | Expression |
---|---|
tglowdim1.p | ⊢ 𝑃 = (Base‘𝐺) |
tglowdim1.d | ⊢ − = (dist‘𝐺) |
tglowdim1.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglowdim1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglowdim1.1 | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
tglowdim1i.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
tglowdim1i | ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglowdim1.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglowdim1.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | tglowdim1.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglowdim1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 𝐺 ∈ TarskiG) |
6 | tglowdim1.1 | . . . . . 6 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
7 | 6 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 2 ≤ (♯‘𝑃)) |
8 | 1, 2, 3, 5, 7 | tglowdim1 26393 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
9 | eqeq2 2770 | . . . . . . . . 9 ⊢ (𝑦 = 𝑎 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑎)) | |
10 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
11 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
12 | 9, 10, 11 | rspcdva 3543 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑎) |
13 | eqeq2 2770 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑏 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑏)) | |
14 | 13 | rspccva 3540 | . . . . . . . . 9 ⊢ ((∀𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
15 | 14 | ad4ant24 753 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
16 | 12, 15 | eqtr3d 2795 | . . . . . . 7 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 = 𝑏) |
17 | nne 2955 | . . . . . . 7 ⊢ (¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏) | |
18 | 16, 17 | sylibr 237 | . . . . . 6 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ¬ 𝑎 ≠ 𝑏) |
19 | 18 | nrexdv 3194 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) → ¬ ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
20 | 19 | nrexdv 3194 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ¬ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
21 | 8, 20 | pm2.65da 816 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) |
22 | rexnal 3165 | . . 3 ⊢ (∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
23 | 21, 22 | sylibr 237 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
24 | df-ne 2952 | . . 3 ⊢ (𝑋 ≠ 𝑦 ↔ ¬ 𝑋 = 𝑦) | |
25 | 24 | rexbii 3175 | . 2 ⊢ (∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
26 | 23, 25 | sylibr 237 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 class class class wbr 5032 ‘cfv 6335 ≤ cle 10714 2c2 11729 ♯chash 13740 Basecbs 16541 distcds 16632 TarskiGcstrkg 26323 Itvcitv 26329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-fz 12940 df-hash 13741 |
This theorem is referenced by: colline 26542 |
Copyright terms: Public domain | W3C validator |