| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglowdim1i | Structured version Visualization version GIF version | ||
| Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
| Ref | Expression |
|---|---|
| tglowdim1.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglowdim1.d | ⊢ − = (dist‘𝐺) |
| tglowdim1.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglowdim1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglowdim1.1 | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
| tglowdim1i.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tglowdim1i | ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglowdim1.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglowdim1.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | tglowdim1.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglowdim1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 𝐺 ∈ TarskiG) |
| 6 | tglowdim1.1 | . . . . . 6 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 2 ≤ (♯‘𝑃)) |
| 8 | 1, 2, 3, 5, 7 | tglowdim1 28463 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
| 9 | eqeq2 2741 | . . . . . . . . 9 ⊢ (𝑦 = 𝑎 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑎)) | |
| 10 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
| 11 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
| 12 | 9, 10, 11 | rspcdva 3580 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑎) |
| 13 | eqeq2 2741 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑏 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑏)) | |
| 14 | 13 | rspccva 3578 | . . . . . . . . 9 ⊢ ((∀𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
| 15 | 14 | ad4ant24 754 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
| 16 | 12, 15 | eqtr3d 2766 | . . . . . . 7 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 = 𝑏) |
| 17 | nne 2929 | . . . . . . 7 ⊢ (¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏) | |
| 18 | 16, 17 | sylibr 234 | . . . . . 6 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ¬ 𝑎 ≠ 𝑏) |
| 19 | 18 | nrexdv 3124 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) → ¬ ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
| 20 | 19 | nrexdv 3124 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ¬ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
| 21 | 8, 20 | pm2.65da 816 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) |
| 22 | rexnal 3081 | . . 3 ⊢ (∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
| 24 | df-ne 2926 | . . 3 ⊢ (𝑋 ≠ 𝑦 ↔ ¬ 𝑋 = 𝑦) | |
| 25 | 24 | rexbii 3076 | . 2 ⊢ (∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
| 26 | 23, 25 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 ≤ cle 11169 2c2 12201 ♯chash 14255 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: colline 28612 |
| Copyright terms: Public domain | W3C validator |