|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tglowdim1i | Structured version Visualization version GIF version | ||
| Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) | 
| Ref | Expression | 
|---|---|
| tglowdim1.p | ⊢ 𝑃 = (Base‘𝐺) | 
| tglowdim1.d | ⊢ − = (dist‘𝐺) | 
| tglowdim1.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| tglowdim1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| tglowdim1.1 | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | 
| tglowdim1i.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) | 
| Ref | Expression | 
|---|---|
| tglowdim1i | ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tglowdim1.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglowdim1.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | tglowdim1.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglowdim1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 𝐺 ∈ TarskiG) | 
| 6 | tglowdim1.1 | . . . . . 6 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 2 ≤ (♯‘𝑃)) | 
| 8 | 1, 2, 3, 5, 7 | tglowdim1 28508 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) | 
| 9 | eqeq2 2749 | . . . . . . . . 9 ⊢ (𝑦 = 𝑎 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑎)) | |
| 10 | simpllr 776 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
| 11 | simplr 769 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
| 12 | 9, 10, 11 | rspcdva 3623 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑎) | 
| 13 | eqeq2 2749 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑏 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑏)) | |
| 14 | 13 | rspccva 3621 | . . . . . . . . 9 ⊢ ((∀𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) | 
| 15 | 14 | ad4ant24 754 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) | 
| 16 | 12, 15 | eqtr3d 2779 | . . . . . . 7 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 = 𝑏) | 
| 17 | nne 2944 | . . . . . . 7 ⊢ (¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏) | |
| 18 | 16, 17 | sylibr 234 | . . . . . 6 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ¬ 𝑎 ≠ 𝑏) | 
| 19 | 18 | nrexdv 3149 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) → ¬ ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) | 
| 20 | 19 | nrexdv 3149 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ¬ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) | 
| 21 | 8, 20 | pm2.65da 817 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | 
| 22 | rexnal 3100 | . . 3 ⊢ (∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) | 
| 24 | df-ne 2941 | . . 3 ⊢ (𝑋 ≠ 𝑦 ↔ ¬ 𝑋 = 𝑦) | |
| 25 | 24 | rexbii 3094 | . 2 ⊢ (∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) | 
| 26 | 23, 25 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 ≤ cle 11296 2c2 12321 ♯chash 14369 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 Itvcitv 28441 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 | 
| This theorem is referenced by: colline 28657 | 
| Copyright terms: Public domain | W3C validator |