MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft Structured version   Visualization version   GIF version

Theorem seqshft 14438
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.)
Hypothesis
Ref Expression
seqshft.1 𝐹 ∈ V
Assertion
Ref Expression
seqshft ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))

Proof of Theorem seqshft
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfn 13375 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
21adantr 483 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
3 zsubcl 12018 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
4 seqfn 13375 . . . . 5 ((𝑀𝑁) ∈ ℤ → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
53, 4syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
6 zcn 11980 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
76adantl 484 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
8 seqex 13365 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
98shftfn 14426 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
105, 7, 9syl2anc 586 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
11 simpr 487 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
12 shftuz 14422 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
1311, 3, 12syl2anc 586 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
14 zcn 11980 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
15 npcan 10889 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1614, 6, 15syl2an 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1716fveq2d 6668 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
1813, 17eqtrd 2856 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
1918fneq2d 6441 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
2010, 19mpbid 234 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
21 negsub 10928 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
2214, 6, 21syl2an 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
2322adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
2423seqeq1d 13369 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
25 eluzelcn 12249 . . . . 5 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
26 negsub 10928 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑧 + -𝑁) = (𝑧𝑁))
2725, 7, 26syl2anr 598 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
2824, 27fveq12d 6671 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
29 simpr 487 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
30 znegcl 12011 . . . . 5 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3130ad2antlr 725 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
32 elfzelz 12902 . . . . . . 7 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
3332zcnd 12082 . . . . . 6 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℂ)
34 seqshft.1 . . . . . . . 8 𝐹 ∈ V
3534shftval 14427 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
36 negsub 10928 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3736ancoms 461 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3837fveq2d 6668 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
3935, 38eqtr4d 2859 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
406, 33, 39syl2an 597 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4140ad4ant24 752 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4229, 31, 41seqshft2 13390 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
438shftval 14427 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
447, 25, 43syl2an 597 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
4528, 42, 443eqtr4d 2866 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
462, 20, 45eqfnfvd 6799 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494   Fn wfn 6344  cfv 6349  (class class class)co 7150  cc 10529   + caddc 10534  cmin 10864  -cneg 10865  cz 11975  cuz 12237  ...cfz 12886  seqcseq 13363   shift cshi 14419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-shft 14420
This theorem is referenced by:  isershft  15014  cvgrat  15233  eftlub  15456  dvradcnv2  40672  binomcxplemnotnn0  40681
  Copyright terms: Public domain W3C validator