| Step | Hyp | Ref
| Expression |
| 1 | | seqfn 14054 |
. . 3
⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ≥‘𝑀)) |
| 2 | 1 | adantr 480 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ≥‘𝑀)) |
| 3 | | zsubcl 12659 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
| 4 | | seqfn 14054 |
. . . . 5
⊢ ((𝑀 − 𝑁) ∈ ℤ → seq(𝑀 − 𝑁)( + , 𝐹) Fn (ℤ≥‘(𝑀 − 𝑁))) |
| 5 | 3, 4 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
seq(𝑀 − 𝑁)( + , 𝐹) Fn (ℤ≥‘(𝑀 − 𝑁))) |
| 6 | | zcn 12618 |
. . . . 5
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 7 | 6 | adantl 481 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℂ) |
| 8 | | seqex 14044 |
. . . . 5
⊢ seq(𝑀 − 𝑁)( + , 𝐹) ∈ V |
| 9 | 8 | shftfn 15112 |
. . . 4
⊢
((seq(𝑀 −
𝑁)( + , 𝐹) Fn (ℤ≥‘(𝑀 − 𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))}) |
| 10 | 5, 7, 9 | syl2anc 584 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))}) |
| 11 | | simpr 484 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
| 12 | | shftuz 15108 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))} = (ℤ≥‘((𝑀 − 𝑁) + 𝑁))) |
| 13 | 11, 3, 12 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))} = (ℤ≥‘((𝑀 − 𝑁) + 𝑁))) |
| 14 | | zcn 12618 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 15 | | npcan 11517 |
. . . . . . 7
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 16 | 14, 6, 15 | syl2an 596 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 17 | 16 | fveq2d 6910 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(ℤ≥‘((𝑀 − 𝑁) + 𝑁)) = (ℤ≥‘𝑀)) |
| 18 | 13, 17 | eqtrd 2777 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))} = (ℤ≥‘𝑀)) |
| 19 | 18 | fneq2d 6662 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝑁) ∈
(ℤ≥‘(𝑀 − 𝑁))} ↔ (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ≥‘𝑀))) |
| 20 | 10, 19 | mpbid 232 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ≥‘𝑀)) |
| 21 | | negsub 11557 |
. . . . . . 7
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 22 | 14, 6, 21 | syl2an 596 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 24 | 23 | seqeq1d 14048 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀 − 𝑁)( + , 𝐹)) |
| 25 | | eluzelcn 12890 |
. . . . 5
⊢ (𝑧 ∈
(ℤ≥‘𝑀) → 𝑧 ∈ ℂ) |
| 26 | | negsub 11557 |
. . . . 5
⊢ ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑧 + -𝑁) = (𝑧 − 𝑁)) |
| 27 | 25, 7, 26 | syl2anr 597 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → (𝑧 + -𝑁) = (𝑧 − 𝑁)) |
| 28 | 24, 27 | fveq12d 6913 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹)‘(𝑧 − 𝑁))) |
| 29 | | simpr 484 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) |
| 30 | | znegcl 12652 |
. . . . 5
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
| 31 | 30 | ad2antlr 727 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → -𝑁 ∈ ℤ) |
| 32 | | elfzelz 13564 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ) |
| 33 | 32 | zcnd 12723 |
. . . . . 6
⊢ (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℂ) |
| 34 | | seqshft.1 |
. . . . . . . 8
⊢ 𝐹 ∈ V |
| 35 | 34 | shftval 15113 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
| 36 | | negsub 11557 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦 − 𝑁)) |
| 37 | 36 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦 − 𝑁)) |
| 38 | 37 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦 − 𝑁))) |
| 39 | 35, 38 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁))) |
| 40 | 6, 33, 39 | syl2an 596 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁))) |
| 41 | 40 | ad4ant24 754 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁))) |
| 42 | 29, 31, 41 | seqshft2 14069 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁))) |
| 43 | 8 | shftval 15113 |
. . . 4
⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
((seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀 − 𝑁)( + , 𝐹)‘(𝑧 − 𝑁))) |
| 44 | 7, 25, 43 | syl2an 596 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → ((seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀 − 𝑁)( + , 𝐹)‘(𝑧 − 𝑁))) |
| 45 | 28, 42, 44 | 3eqtr4d 2787 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)‘𝑧)) |
| 46 | 2, 20, 45 | eqfnfvd 7054 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) |