MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft Structured version   Visualization version   GIF version

Theorem seqshft 14673
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.)
Hypothesis
Ref Expression
seqshft.1 𝐹 ∈ V
Assertion
Ref Expression
seqshft ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))

Proof of Theorem seqshft
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfn 13611 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
21adantr 484 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
3 zsubcl 12244 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
4 seqfn 13611 . . . . 5 ((𝑀𝑁) ∈ ℤ → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
53, 4syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
6 zcn 12206 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
76adantl 485 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
8 seqex 13601 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
98shftfn 14661 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
105, 7, 9syl2anc 587 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
11 simpr 488 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
12 shftuz 14657 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
1311, 3, 12syl2anc 587 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
14 zcn 12206 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
15 npcan 11112 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1614, 6, 15syl2an 599 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1716fveq2d 6740 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
1813, 17eqtrd 2778 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
1918fneq2d 6491 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
2010, 19mpbid 235 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
21 negsub 11151 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
2214, 6, 21syl2an 599 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
2322adantr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
2423seqeq1d 13605 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
25 eluzelcn 12475 . . . . 5 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
26 negsub 11151 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑧 + -𝑁) = (𝑧𝑁))
2725, 7, 26syl2anr 600 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
2824, 27fveq12d 6743 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
29 simpr 488 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
30 znegcl 12237 . . . . 5 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3130ad2antlr 727 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
32 elfzelz 13137 . . . . . . 7 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
3332zcnd 12308 . . . . . 6 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℂ)
34 seqshft.1 . . . . . . . 8 𝐹 ∈ V
3534shftval 14662 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
36 negsub 11151 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3736ancoms 462 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3837fveq2d 6740 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
3935, 38eqtr4d 2781 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
406, 33, 39syl2an 599 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4140ad4ant24 754 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4229, 31, 41seqshft2 13627 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
438shftval 14662 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
447, 25, 43syl2an 599 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
4528, 42, 443eqtr4d 2788 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
462, 20, 45eqfnfvd 6874 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  {crab 3066  Vcvv 3421   Fn wfn 6393  cfv 6398  (class class class)co 7232  cc 10752   + caddc 10757  cmin 11087  -cneg 11088  cz 12201  cuz 12463  ...cfz 13120  seqcseq 13599   shift cshi 14654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-n0 12116  df-z 12202  df-uz 12464  df-fz 13121  df-seq 13600  df-shft 14655
This theorem is referenced by:  isershft  15252  cvgrat  15472  eftlub  15695  dvradcnv2  41667  binomcxplemnotnn0  41676
  Copyright terms: Public domain W3C validator