MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft Structured version   Visualization version   GIF version

Theorem seqshft 14163
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.)
Hypothesis
Ref Expression
seqshft.1 𝐹 ∈ V
Assertion
Ref Expression
seqshft ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))

Proof of Theorem seqshft
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfn 13063 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
21adantr 473 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
3 zsubcl 11705 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
4 seqfn 13063 . . . . 5 ((𝑀𝑁) ∈ ℤ → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
53, 4syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
6 zcn 11667 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
76adantl 474 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
8 seqex 13053 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
98shftfn 14151 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
105, 7, 9syl2anc 580 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
11 simpr 478 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
12 shftuz 14147 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
1311, 3, 12syl2anc 580 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
14 zcn 11667 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
15 npcan 10580 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1614, 6, 15syl2an 590 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
1716fveq2d 6413 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
1813, 17eqtrd 2831 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
1918fneq2d 6191 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
2010, 19mpbid 224 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
21 negsub 10619 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
2214, 6, 21syl2an 590 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
2322adantr 473 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
2423seqeq1d 13057 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
25 eluzelcn 11938 . . . . 5 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
26 negsub 10619 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑧 + -𝑁) = (𝑧𝑁))
2725, 7, 26syl2anr 591 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
2824, 27fveq12d 6416 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
29 simpr 478 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
30 znegcl 11698 . . . . 5 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3130ad2antlr 719 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
32 elfzelz 12592 . . . . . . 7 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
3332zcnd 11769 . . . . . 6 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℂ)
34 seqshft.1 . . . . . . . 8 𝐹 ∈ V
3534shftval 14152 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
36 negsub 10619 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3736ancoms 451 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 + -𝑁) = (𝑦𝑁))
3837fveq2d 6413 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
3935, 38eqtr4d 2834 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
406, 33, 39syl2an 590 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4140ad4ant24 764 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
4229, 31, 41seqshft2 13077 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
438shftval 14152 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
447, 25, 43syl2an 590 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
4528, 42, 443eqtr4d 2841 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
462, 20, 45eqfnfvd 6538 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  {crab 3091  Vcvv 3383   Fn wfn 6094  cfv 6099  (class class class)co 6876  cc 10220   + caddc 10225  cmin 10554  -cneg 10555  cz 11662  cuz 11926  ...cfz 12576  seqcseq 13051   shift cshi 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-seq 13052  df-shft 14145
This theorem is referenced by:  isershft  14732  cvgrat  14949  eftlub  15172  dvradcnv2  39316  binomcxplemnotnn0  39325
  Copyright terms: Public domain W3C validator