MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Structured version   Visualization version   GIF version

Theorem infxp 9639
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 8539 . . 3 (𝐵𝐴𝐵𝐴)
2 infxpabs 9636 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
3 infunabs 9631 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
433expa 1114 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
54adantrl 714 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴𝐵) ≈ 𝐴)
65ensymd 8562 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐴 ≈ (𝐴𝐵))
7 entr 8563 . . . . . 6 (((𝐴 × 𝐵) ≈ 𝐴𝐴 ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
82, 6, 7syl2anc 586 . . . . 5 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
98expr 459 . . . 4 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵 ≠ ∅) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
109adantrl 714 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
111, 10syl5 34 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
12 domtri2 9420 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1312ad2ant2r 745 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
14 xpcomeng 8611 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
1514ad2ant2r 745 . . . . 5 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
16 simplrl 775 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
17 domtr 8564 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐵) → ω ≼ 𝐵)
1817ad4ant24 752 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → ω ≼ 𝐵)
19 infn0 8782 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
2019ad3antlr 729 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴 ≠ ∅)
21 simpr 487 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴𝐵)
22 infxpabs 9636 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (𝐴 ≠ ∅ ∧ 𝐴𝐵)) → (𝐵 × 𝐴) ≈ 𝐵)
2316, 18, 20, 21, 22syl22anc 836 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ 𝐵)
24 uncom 4131 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
25 infunabs 9631 . . . . . . . . 9 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2616, 18, 21, 25syl3anc 1367 . . . . . . . 8 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2724, 26eqbrtrid 5103 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
2827ensymd 8562 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ≈ (𝐴𝐵))
29 entr 8563 . . . . . 6 (((𝐵 × 𝐴) ≈ 𝐵𝐵 ≈ (𝐴𝐵)) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
3023, 28, 29syl2anc 586 . . . . 5 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
31 entr 8563 . . . . 5 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3215, 30, 31syl2an2r 683 . . . 4 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3332ex 415 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3413, 33sylbird 262 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (¬ 𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3511, 34pm2.61d 181 1 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114  wne 3018  cun 3936  c0 4293   class class class wbr 5068   × cxp 5555  dom cdm 5557  ωcom 7582  cen 8508  cdom 8509  csdm 8510  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-dju 9332  df-card 9370
This theorem is referenced by:  alephmul  10002
  Copyright terms: Public domain W3C validator