MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss2 Structured version   Visualization version   GIF version

Theorem sumss2 14941
Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumss2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑀(𝑘)

Proof of Theorem sumss2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 754 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐴𝐵)
2 iftrue 4350 . . . . . . 7 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
32adantl 474 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
4 nfcsb1v 3798 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶
54nfel1 2940 . . . . . . . 8 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
6 csbeq1a 3789 . . . . . . . . 9 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
76eleq1d 2844 . . . . . . . 8 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
85, 7rspc 3523 . . . . . . 7 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
98impcom 399 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
103, 9eqeltrd 2860 . . . . 5 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1110ad4ant24 741 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
12 eldifn 3988 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1312iffalsed 4355 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1413adantl 474 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
15 simpr 477 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐵 ⊆ (ℤ𝑀))
161, 11, 14, 15sumss 14939 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
17 simpll 754 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐴𝐵)
1810ad4ant24 741 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1913adantl 474 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
20 simpr 477 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin)
2117, 18, 19, 20fsumss 14940 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
2216, 21jaodan 940 . 2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
23 iftrue 4350 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2423sumeq2i 14914 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
25 nfcv 2926 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
26 nfv 1873 . . . . 5 𝑘 𝑚𝐴
27 nfcv 2926 . . . . 5 𝑘0
2826, 4, 27nfif 4373 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
29 eleq1w 2842 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
3029, 6ifbieq1d 4367 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3125, 28, 30cbvsumi 14912 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3224, 31eqtr3i 2798 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3325, 28, 30cbvsumi 14912 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3422, 32, 333eqtr4g 2833 1 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833   = wceq 1507  wcel 2050  wral 3082  csb 3780  cdif 3820  wss 3823  ifcif 4344  cfv 6185  Fincfn 8304  cc 10331  0cc0 10333  cuz 12056  Σcsu 14901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-sum 14902
This theorem is referenced by:  fsumsplit  14955  sumsplit  14981  isumless  15058  rpnnen2lem11  15435  sumhash  16086  prmrec  16112  plyeq0lem  24515  prmorcht  25469  musumsum  25483  pclogsum  25505  dchrhash  25561  rpvmasum2  25802  pntlemj  25893  plymulx0  31492  hashreprin  31568  circlemeth  31588
  Copyright terms: Public domain W3C validator