MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss2 Structured version   Visualization version   GIF version

Theorem sumss2 15419
Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumss2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑀(𝑘)

Proof of Theorem sumss2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐴𝐵)
2 iftrue 4470 . . . . . . 7 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
32adantl 481 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
4 nfcsb1v 3861 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶
54nfel1 2924 . . . . . . . 8 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
6 csbeq1a 3850 . . . . . . . . 9 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
76eleq1d 2824 . . . . . . . 8 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
85, 7rspc 3547 . . . . . . 7 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
98impcom 407 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
103, 9eqeltrd 2840 . . . . 5 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1110ad4ant24 750 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
12 eldifn 4066 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1312iffalsed 4475 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1413adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
15 simpr 484 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐵 ⊆ (ℤ𝑀))
161, 11, 14, 15sumss 15417 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
17 simpll 763 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐴𝐵)
1810ad4ant24 750 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1913adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
20 simpr 484 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin)
2117, 18, 19, 20fsumss 15418 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
2216, 21jaodan 954 . 2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
23 iftrue 4470 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2423sumeq2i 15392 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
25 nfcv 2908 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
26 nfv 1920 . . . . 5 𝑘 𝑚𝐴
27 nfcv 2908 . . . . 5 𝑘0
2826, 4, 27nfif 4494 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
29 eleq1w 2822 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
3029, 6ifbieq1d 4488 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3125, 28, 30cbvsumi 15390 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3224, 31eqtr3i 2769 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3325, 28, 30cbvsumi 15390 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3422, 32, 333eqtr4g 2804 1 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1541  wcel 2109  wral 3065  csb 3836  cdif 3888  wss 3891  ifcif 4464  cfv 6430  Fincfn 8707  cc 10853  0cc0 10855  cuz 12564  Σcsu 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379
This theorem is referenced by:  fsumsplit  15434  sumsplit  15461  isumless  15538  rpnnen2lem11  15914  sumhash  16578  prmrec  16604  plyeq0lem  25352  prmorcht  26308  musumsum  26322  pclogsum  26344  dchrhash  26400  rpvmasum2  26641  pntlemj  26732  plymulx0  32505  hashreprin  32579  circlemeth  32599
  Copyright terms: Public domain W3C validator