![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumss2 | Structured version Visualization version GIF version |
Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sumss2 | ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 754 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ≥‘𝑀)) → 𝐴 ⊆ 𝐵) | |
2 | iftrue 4350 | . . . . . . 7 ⊢ (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) | |
3 | 2 | adantl 474 | . . . . . 6 ⊢ ((∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
4 | nfcsb1v 3798 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 | |
5 | 4 | nfel1 2940 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
6 | csbeq1a 3789 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) | |
7 | 6 | eleq1d 2844 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
8 | 5, 7 | rspc 3523 | . . . . . . 7 ⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
9 | 8 | impcom 399 | . . . . . 6 ⊢ ((∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
10 | 3, 9 | eqeltrd 2860 | . . . . 5 ⊢ ((∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
11 | 10 | ad4ant24 741 | . . . 4 ⊢ ((((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
12 | eldifn 3988 | . . . . . 6 ⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑚 ∈ 𝐴) | |
13 | 12 | iffalsed 4355 | . . . . 5 ⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
14 | 13 | adantl 474 | . . . 4 ⊢ ((((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
15 | simpr 477 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ≥‘𝑀)) → 𝐵 ⊆ (ℤ≥‘𝑀)) | |
16 | 1, 11, 14, 15 | sumss 14939 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ≥‘𝑀)) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
17 | simpll 754 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐴 ⊆ 𝐵) | |
18 | 10 | ad4ant24 741 | . . . 4 ⊢ ((((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
19 | 13 | adantl 474 | . . . 4 ⊢ ((((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
20 | simpr 477 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
21 | 17, 18, 19, 20 | fsumss 14940 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
22 | 16, 21 | jaodan 940 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
23 | iftrue 4350 | . . . 4 ⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) | |
24 | 23 | sumeq2i 14914 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑘 ∈ 𝐴 𝐶 |
25 | nfcv 2926 | . . . 4 ⊢ Ⅎ𝑚if(𝑘 ∈ 𝐴, 𝐶, 0) | |
26 | nfv 1873 | . . . . 5 ⊢ Ⅎ𝑘 𝑚 ∈ 𝐴 | |
27 | nfcv 2926 | . . . . 5 ⊢ Ⅎ𝑘0 | |
28 | 26, 4, 27 | nfif 4373 | . . . 4 ⊢ Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
29 | eleq1w 2842 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) | |
30 | 29, 6 | ifbieq1d 4367 | . . . 4 ⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐶, 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
31 | 25, 28, 30 | cbvsumi 14912 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
32 | 24, 31 | eqtr3i 2798 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
33 | 25, 28, 30 | cbvsumi 14912 | . 2 ⊢ Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
34 | 22, 32, 33 | 3eqtr4g 2833 | 1 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ≥‘𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ∀wral 3082 ⦋csb 3780 ∖ cdif 3820 ⊆ wss 3823 ifcif 4344 ‘cfv 6185 Fincfn 8304 ℂcc 10331 0cc0 10333 ℤ≥cuz 12056 Σcsu 14901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fz 12707 df-fzo 12848 df-seq 13183 df-exp 13243 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 df-sum 14902 |
This theorem is referenced by: fsumsplit 14955 sumsplit 14981 isumless 15058 rpnnen2lem11 15435 sumhash 16086 prmrec 16112 plyeq0lem 24515 prmorcht 25469 musumsum 25483 pclogsum 25505 dchrhash 25561 rpvmasum2 25802 pntlemj 25893 plymulx0 31492 hashreprin 31568 circlemeth 31588 |
Copyright terms: Public domain | W3C validator |