MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss2 Structured version   Visualization version   GIF version

Theorem sumss2 15762
Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumss2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑀(𝑘)

Proof of Theorem sumss2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐴𝐵)
2 iftrue 4531 . . . . . . 7 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
32adantl 481 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
4 nfcsb1v 3923 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶
54nfel1 2922 . . . . . . . 8 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
6 csbeq1a 3913 . . . . . . . . 9 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
76eleq1d 2826 . . . . . . . 8 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
85, 7rspc 3610 . . . . . . 7 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
98impcom 407 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
103, 9eqeltrd 2841 . . . . 5 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1110ad4ant24 754 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
12 eldifn 4132 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1312iffalsed 4536 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1413adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
15 simpr 484 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐵 ⊆ (ℤ𝑀))
161, 11, 14, 15sumss 15760 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
17 simpll 767 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐴𝐵)
1810ad4ant24 754 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1913adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
20 simpr 484 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin)
2117, 18, 19, 20fsumss 15761 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
2216, 21jaodan 960 . 2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
23 iftrue 4531 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2423sumeq2i 15734 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
25 eleq1w 2824 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2625, 6ifbieq1d 4550 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
27 nfcv 2905 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
28 nfv 1914 . . . . 5 𝑘 𝑚𝐴
29 nfcv 2905 . . . . 5 𝑘0
3028, 4, 29nfif 4556 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3126, 27, 30cbvsum 15731 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3224, 31eqtr3i 2767 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3326, 27, 30cbvsum 15731 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3422, 32, 333eqtr4g 2802 1 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  csb 3899  cdif 3948  wss 3951  ifcif 4525  cfv 6561  Fincfn 8985  cc 11153  0cc0 11155  cuz 12878  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  fsumsplit  15777  sumsplit  15804  isumless  15881  rpnnen2lem11  16260  sumhash  16934  prmrec  16960  plyeq0lem  26249  prmorcht  27221  musumsum  27235  pclogsum  27259  dchrhash  27315  rpvmasum2  27556  pntlemj  27647  plymulx0  34562  hashreprin  34635  circlemeth  34655
  Copyright terms: Public domain W3C validator