MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Structured version   Visualization version   GIF version

Theorem iscfil2 23870
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐹   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 23869 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2 xmetf 22936 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
32ad3antrrr 729 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
43ffund 6491 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → Fun 𝐷)
5 filelss 22457 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
65ad4ant24 753 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝑦𝑋)
7 xpss12 5534 . . . . . . . . 9 ((𝑦𝑋𝑦𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
86, 6, 7syl2anc 587 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
93fdmd 6497 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → dom 𝐷 = (𝑋 × 𝑋))
108, 9sseqtrrd 3956 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ dom 𝐷)
11 funimassov 7305 . . . . . . 7 ((Fun 𝐷 ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
124, 10, 11syl2anc 587 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
13 0xr 10677 . . . . . . . . 9 0 ∈ ℝ*
1413a1i 11 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ∈ ℝ*)
15 simpllr 775 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ+)
1615rpxrd 12420 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ*)
17 simp-4l 782 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝐷 ∈ (∞Met‘𝑋))
186sselda 3915 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑧𝑦) → 𝑧𝑋)
1918adantrr 716 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑧𝑋)
206sselda 3915 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑤𝑦) → 𝑤𝑋)
2120adantrl 715 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑤𝑋)
22 xmetcl 22938 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ*)
2317, 19, 21, 22syl3anc 1368 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → (𝑧𝐷𝑤) ∈ ℝ*)
24 xmetge0 22951 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → 0 ≤ (𝑧𝐷𝑤))
2517, 19, 21, 24syl3anc 1368 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ≤ (𝑧𝐷𝑤))
26 elico1 12769 . . . . . . . . . 10 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥)))
27 df-3an 1086 . . . . . . . . . 10 (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥))
2826, 27syl6bb 290 . . . . . . . . 9 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥)))
2928baibd 543 . . . . . . . 8 (((0 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤))) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
3014, 16, 23, 25, 29syl22anc 837 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
31302ralbidva 3163 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3212, 31bitrd 282 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3332rexbidva 3255 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3433ralbidva 3161 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3534pm5.32da 582 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
361, 35bitrd 282 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030   × cxp 5517  dom cdm 5519  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  +crp 12377  [,)cico 12728  ∞Metcxmet 20076  Filcfil 22450  CauFilccfil 23856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-xmet 20084  df-fbas 20088  df-fil 22451  df-cfil 23859
This theorem is referenced by:  cfili  23872  fgcfil  23875  iscfil3  23877  cfilresi  23899  cfilres  23900
  Copyright terms: Public domain W3C validator