MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Structured version   Visualization version   GIF version

Theorem iscfil2 25173
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐹   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 25172 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2 xmetf 24224 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
32ad3antrrr 730 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
43ffund 6695 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → Fun 𝐷)
5 filelss 23746 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
65ad4ant24 754 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝑦𝑋)
7 xpss12 5656 . . . . . . . . 9 ((𝑦𝑋𝑦𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
86, 6, 7syl2anc 584 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
93fdmd 6701 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → dom 𝐷 = (𝑋 × 𝑋))
108, 9sseqtrrd 3987 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ dom 𝐷)
11 funimassov 7569 . . . . . . 7 ((Fun 𝐷 ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
124, 10, 11syl2anc 584 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
13 0xr 11228 . . . . . . . . 9 0 ∈ ℝ*
1413a1i 11 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ∈ ℝ*)
15 simpllr 775 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ+)
1615rpxrd 13003 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ*)
17 simp-4l 782 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝐷 ∈ (∞Met‘𝑋))
186sselda 3949 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑧𝑦) → 𝑧𝑋)
1918adantrr 717 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑧𝑋)
206sselda 3949 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑤𝑦) → 𝑤𝑋)
2120adantrl 716 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑤𝑋)
22 xmetcl 24226 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ*)
2317, 19, 21, 22syl3anc 1373 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → (𝑧𝐷𝑤) ∈ ℝ*)
24 xmetge0 24239 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → 0 ≤ (𝑧𝐷𝑤))
2517, 19, 21, 24syl3anc 1373 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ≤ (𝑧𝐷𝑤))
26 elico1 13356 . . . . . . . . . 10 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥)))
27 df-3an 1088 . . . . . . . . . 10 (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥))
2826, 27bitrdi 287 . . . . . . . . 9 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥)))
2928baibd 539 . . . . . . . 8 (((0 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤))) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
3014, 16, 23, 25, 29syl22anc 838 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
31302ralbidva 3200 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3212, 31bitrd 279 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3332rexbidva 3156 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3433ralbidva 3155 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3534pm5.32da 579 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
361, 35bitrd 279 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110   × cxp 5639  dom cdm 5641  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214   < clt 11215  cle 11216  +crp 12958  [,)cico 13315  ∞Metcxmet 21256  Filcfil 23739  CauFilccfil 25159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-xmet 21264  df-fbas 21268  df-fil 23740  df-cfil 25162
This theorem is referenced by:  cfili  25175  fgcfil  25178  iscfil3  25180  cfilresi  25202  cfilres  25203
  Copyright terms: Public domain W3C validator