MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsncoprmbd Structured version   Visualization version   GIF version

Theorem prmdvdsncoprmbd 16613
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16537 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
prmdvdsncoprmbd.a (𝜑𝐴 ∈ ℕ)
prmdvdsncoprmbd.b (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
prmdvdsncoprmbd (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝜑,𝑝   𝐴,𝑝   𝐵,𝑝

Proof of Theorem prmdvdsncoprmbd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16583 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21a1i 11 . . . . . 6 (𝜑 → (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2)))
32anim1d 611 . . . . 5 (𝜑 → ((𝑝 ∈ ℙ ∧ (𝑝𝐴𝑝𝐵)) → (𝑝 ∈ (ℤ‘2) ∧ (𝑝𝐴𝑝𝐵))))
43reximdv2 3157 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵)))
5 breq1 5113 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐴𝑖𝐴))
6 breq1 5113 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐵𝑖𝐵))
75, 6anbi12d 631 . . . . 5 (𝑝 = 𝑖 → ((𝑝𝐴𝑝𝐵) ↔ (𝑖𝐴𝑖𝐵)))
87cbvrexvw 3224 . . . 4 (∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
94, 8syl6ib 250 . . 3 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
10 exprmfct 16591 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑖)
1110ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ 𝑝𝑖)
12 prmnn 16561 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1312ad2antlr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℕ)
1413nnzd 12535 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℤ)
15 eluzelz 12782 . . . . . . . . . . 11 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
1615ad2antrr 724 . . . . . . . . . 10 (((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
1716ad4ant24 752 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
18 prmdvdsncoprmbd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
1918ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℕ)
2019nnzd 12535 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℤ)
21 simpr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝑖)
22 simprrl 779 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐴)
2322ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐴)
2414, 17, 20, 21, 23dvdstrd 16188 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐴)
25 prmdvdsncoprmbd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
2625ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℕ)
2726nnzd 12535 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℤ)
28 simprrr 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐵)
2928ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐵)
3014, 17, 27, 21, 29dvdstrd 16188 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐵)
3124, 30jca 512 . . . . . . 7 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → (𝑝𝐴𝑝𝐵))
3231ex 413 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑖 → (𝑝𝐴𝑝𝐵)))
3332reximdva 3161 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → (∃𝑝 ∈ ℙ 𝑝𝑖 → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
3411, 33mpd 15 . . . 4 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵))
3534rexlimdvaa 3149 . . 3 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
369, 35impbid 211 . 2 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
37 ncoprmgcdne1b 16537 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3818, 25, 37syl2anc 584 . 2 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3936, 38bitrd 278 1 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2939  wrex 3069   class class class wbr 5110  cfv 6501  (class class class)co 7362  1c1 11061  cn 12162  2c2 12217  cz 12508  cuz 12772  cdvds 16147   gcd cgcd 16385  cprime 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-dvds 16148  df-gcd 16386  df-prm 16559
This theorem is referenced by:  aks4d1p8  40617  flt4lem5elem  41047
  Copyright terms: Public domain W3C validator