MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsncoprmbd Structured version   Visualization version   GIF version

Theorem prmdvdsncoprmbd 16761
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16684 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
prmdvdsncoprmbd.a (𝜑𝐴 ∈ ℕ)
prmdvdsncoprmbd.b (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
prmdvdsncoprmbd (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝜑,𝑝   𝐴,𝑝   𝐵,𝑝

Proof of Theorem prmdvdsncoprmbd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16730 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21a1i 11 . . . . . 6 (𝜑 → (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2)))
32anim1d 611 . . . . 5 (𝜑 → ((𝑝 ∈ ℙ ∧ (𝑝𝐴𝑝𝐵)) → (𝑝 ∈ (ℤ‘2) ∧ (𝑝𝐴𝑝𝐵))))
43reximdv2 3162 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵)))
5 breq1 5151 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐴𝑖𝐴))
6 breq1 5151 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐵𝑖𝐵))
75, 6anbi12d 632 . . . . 5 (𝑝 = 𝑖 → ((𝑝𝐴𝑝𝐵) ↔ (𝑖𝐴𝑖𝐵)))
87cbvrexvw 3236 . . . 4 (∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
94, 8imbitrdi 251 . . 3 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
10 exprmfct 16738 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑖)
1110ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ 𝑝𝑖)
12 prmnn 16708 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1312ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℕ)
1413nnzd 12638 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℤ)
15 eluzelz 12886 . . . . . . . . . . 11 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
1615ad2antrr 726 . . . . . . . . . 10 (((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
1716ad4ant24 754 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
18 prmdvdsncoprmbd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
1918ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℕ)
2019nnzd 12638 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝑖)
22 simprrl 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐴)
2322ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐴)
2414, 17, 20, 21, 23dvdstrd 16329 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐴)
25 prmdvdsncoprmbd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
2625ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℕ)
2726nnzd 12638 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℤ)
28 simprrr 782 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐵)
2928ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐵)
3014, 17, 27, 21, 29dvdstrd 16329 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐵)
3124, 30jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → (𝑝𝐴𝑝𝐵))
3231ex 412 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑖 → (𝑝𝐴𝑝𝐵)))
3332reximdva 3166 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → (∃𝑝 ∈ ℙ 𝑝𝑖 → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
3411, 33mpd 15 . . . 4 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵))
3534rexlimdvaa 3154 . . 3 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
369, 35impbid 212 . 2 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
37 ncoprmgcdne1b 16684 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3818, 25, 37syl2anc 584 . 2 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3936, 38bitrd 279 1 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  1c1 11154  cn 12264  2c2 12319  cz 12611  cuz 12876  cdvds 16287   gcd cgcd 16528  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  aks4d1p8  42069  flt4lem5elem  42638
  Copyright terms: Public domain W3C validator