MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsncoprmbd Structured version   Visualization version   GIF version

Theorem prmdvdsncoprmbd 16731
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16654 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
prmdvdsncoprmbd.a (𝜑𝐴 ∈ ℕ)
prmdvdsncoprmbd.b (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
prmdvdsncoprmbd (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝜑,𝑝   𝐴,𝑝   𝐵,𝑝

Proof of Theorem prmdvdsncoprmbd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16700 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21a1i 11 . . . . . 6 (𝜑 → (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2)))
32anim1d 611 . . . . 5 (𝜑 → ((𝑝 ∈ ℙ ∧ (𝑝𝐴𝑝𝐵)) → (𝑝 ∈ (ℤ‘2) ∧ (𝑝𝐴𝑝𝐵))))
43reximdv2 3148 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵)))
5 breq1 5119 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐴𝑖𝐴))
6 breq1 5119 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐵𝑖𝐵))
75, 6anbi12d 632 . . . . 5 (𝑝 = 𝑖 → ((𝑝𝐴𝑝𝐵) ↔ (𝑖𝐴𝑖𝐵)))
87cbvrexvw 3219 . . . 4 (∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
94, 8imbitrdi 251 . . 3 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
10 exprmfct 16708 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑖)
1110ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ 𝑝𝑖)
12 prmnn 16678 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1312ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℕ)
1413nnzd 12607 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℤ)
15 eluzelz 12854 . . . . . . . . . . 11 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
1615ad2antrr 726 . . . . . . . . . 10 (((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
1716ad4ant24 754 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
18 prmdvdsncoprmbd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
1918ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℕ)
2019nnzd 12607 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝑖)
22 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐴)
2322ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐴)
2414, 17, 20, 21, 23dvdstrd 16299 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐴)
25 prmdvdsncoprmbd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
2625ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℕ)
2726nnzd 12607 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℤ)
28 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐵)
2928ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐵)
3014, 17, 27, 21, 29dvdstrd 16299 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐵)
3124, 30jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → (𝑝𝐴𝑝𝐵))
3231ex 412 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑖 → (𝑝𝐴𝑝𝐵)))
3332reximdva 3151 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → (∃𝑝 ∈ ℙ 𝑝𝑖 → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
3411, 33mpd 15 . . . 4 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵))
3534rexlimdvaa 3140 . . 3 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
369, 35impbid 212 . 2 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
37 ncoprmgcdne1b 16654 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3818, 25, 37syl2anc 584 . 2 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3936, 38bitrd 279 1 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wne 2931  wrex 3059   class class class wbr 5116  cfv 6527  (class class class)co 7399  1c1 11122  cn 12232  2c2 12287  cz 12580  cuz 12844  cdvds 16257   gcd cgcd 16498  cprime 16675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-dvds 16258  df-gcd 16499  df-prm 16676
This theorem is referenced by:  aks4d1p8  42022  flt4lem5elem  42599
  Copyright terms: Public domain W3C validator