MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsncoprmbd Structured version   Visualization version   GIF version

Theorem prmdvdsncoprmbd 16359
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16283 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
prmdvdsncoprmbd.a (𝜑𝐴 ∈ ℕ)
prmdvdsncoprmbd.b (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
prmdvdsncoprmbd (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝜑,𝑝   𝐴,𝑝   𝐵,𝑝

Proof of Theorem prmdvdsncoprmbd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16329 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21a1i 11 . . . . . 6 (𝜑 → (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2)))
32anim1d 610 . . . . 5 (𝜑 → ((𝑝 ∈ ℙ ∧ (𝑝𝐴𝑝𝐵)) → (𝑝 ∈ (ℤ‘2) ∧ (𝑝𝐴𝑝𝐵))))
43reximdv2 3198 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵)))
5 breq1 5073 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐴𝑖𝐴))
6 breq1 5073 . . . . . 6 (𝑝 = 𝑖 → (𝑝𝐵𝑖𝐵))
75, 6anbi12d 630 . . . . 5 (𝑝 = 𝑖 → ((𝑝𝐴𝑝𝐵) ↔ (𝑖𝐴𝑖𝐵)))
87cbvrexvw 3373 . . . 4 (∃𝑝 ∈ (ℤ‘2)(𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
94, 8syl6ib 250 . . 3 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
10 exprmfct 16337 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑖)
1110ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ 𝑝𝑖)
12 prmnn 16307 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1312ad2antlr 723 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℕ)
1413nnzd 12354 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝 ∈ ℤ)
15 eluzelz 12521 . . . . . . . . . . 11 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
1615ad2antrr 722 . . . . . . . . . 10 (((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
1716ad4ant24 750 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖 ∈ ℤ)
18 prmdvdsncoprmbd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
1918ad3antrrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℕ)
2019nnzd 12354 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐴 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝑖)
22 simprrl 777 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐴)
2322ad2antrr 722 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐴)
2414, 17, 20, 21, 23dvdstrd 15932 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐴)
25 prmdvdsncoprmbd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
2625ad3antrrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℕ)
2726nnzd 12354 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝐵 ∈ ℤ)
28 simprrr 778 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → 𝑖𝐵)
2928ad2antrr 722 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑖𝐵)
3014, 17, 27, 21, 29dvdstrd 15932 . . . . . . . 8 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → 𝑝𝐵)
3124, 30jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑖) → (𝑝𝐴𝑝𝐵))
3231ex 412 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑖 → (𝑝𝐴𝑝𝐵)))
3332reximdva 3202 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → (∃𝑝 ∈ ℙ 𝑝𝑖 → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
3411, 33mpd 15 . . . 4 ((𝜑 ∧ (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵))
3534rexlimdvaa 3213 . . 3 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → ∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
369, 35impbid 211 . 2 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
37 ncoprmgcdne1b 16283 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3818, 25, 37syl2anc 583 . 2 (𝜑 → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3936, 38bitrd 278 1 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803  cn 11903  2c2 11958  cz 12249  cuz 12511  cdvds 15891   gcd cgcd 16129  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305
This theorem is referenced by:  aks4d1p8  40023  flt4lem5elem  40404
  Copyright terms: Public domain W3C validator