| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for dnibnd 36486. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnibndlem5 | ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 2 | halfre 12402 | . . . . . . 7 ⊢ (1 / 2) ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ) |
| 4 | readdcl 11158 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) | |
| 5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ) |
| 6 | flltp1 13769 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) |
| 8 | ax-1cn 11133 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 9 | 2halves 12407 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 11 | 10 | eqcomi 2739 | . . . . . . 7 ⊢ 1 = ((1 / 2) + (1 / 2)) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 = ((1 / 2) + (1 / 2))) |
| 13 | 12 | oveq2d 7406 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
| 14 | reflcl 13765 | . . . . . . . . . 10 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
| 15 | 5, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
| 16 | 15 | recnd 11209 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ) |
| 17 | 3 | recnd 11209 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ) |
| 18 | 16, 17, 17 | 3jca 1128 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) |
| 19 | addass 11162 | . . . . . . 7 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
| 21 | 20 | eqcomd 2736 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
| 22 | 13, 21 | eqtrd 2765 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
| 23 | 7, 22 | breqtrd 5136 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
| 24 | 15, 3 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ)) |
| 25 | readdcl 11158 | . . . . 5 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) | |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) |
| 27 | 1, 26, 3 | ltadd1d 11778 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))) |
| 28 | 23, 27 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) |
| 29 | 1, 26 | posdifd 11772 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) |
| 30 | 28, 29 | mpbid 232 | 1 ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 − cmin 11412 / cdiv 11842 2c2 12248 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 |
| This theorem is referenced by: dnibndlem9 36481 |
| Copyright terms: Public domain | W3C validator |