Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem5 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 34667. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem5 | ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | halfre 12187 | . . . . . . 7 ⊢ (1 / 2) ∈ ℝ | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ) |
4 | readdcl 10955 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) | |
5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ) |
6 | flltp1 13518 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) |
8 | ax-1cn 10930 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
9 | 2halves 12201 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ((1 / 2) + (1 / 2)) = 1 |
11 | 10 | eqcomi 2749 | . . . . . . 7 ⊢ 1 = ((1 / 2) + (1 / 2)) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 = ((1 / 2) + (1 / 2))) |
13 | 12 | oveq2d 7287 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
14 | reflcl 13514 | . . . . . . . . . 10 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
15 | 5, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
16 | 15 | recnd 11004 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ) |
17 | 3 | recnd 11004 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ) |
18 | 16, 17, 17 | 3jca 1127 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) |
19 | addass 10959 | . . . . . . 7 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
21 | 20 | eqcomd 2746 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
22 | 13, 21 | eqtrd 2780 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
23 | 7, 22 | breqtrd 5105 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
24 | 15, 3 | jca 512 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ)) |
25 | readdcl 10955 | . . . . 5 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) | |
26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) |
27 | 1, 26, 3 | ltadd1d 11568 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))) |
28 | 23, 27 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) |
29 | 1, 26 | posdifd 11562 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) |
30 | 28, 29 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 < clt 11010 − cmin 11205 / cdiv 11632 2c2 12028 ⌊cfl 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-fl 13510 |
This theorem is referenced by: dnibndlem9 34662 |
Copyright terms: Public domain | W3C validator |