Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem5 Structured version   Visualization version   GIF version

Theorem dnibndlem5 34662
Description: Lemma for dnibnd 34671. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Assertion
Ref Expression
dnibndlem5 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))

Proof of Theorem dnibndlem5
StepHypRef Expression
1 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2 halfre 12187 . . . . . . 7 (1 / 2) ∈ ℝ
32a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
4 readdcl 10954 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
51, 3, 4syl2anc2 585 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
6 flltp1 13520 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1))
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1))
8 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
9 2halves 12201 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
108, 9ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
1110eqcomi 2747 . . . . . . 7 1 = ((1 / 2) + (1 / 2))
1211a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 1 = ((1 / 2) + (1 / 2)))
1312oveq2d 7291 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
14 reflcl 13516 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
155, 14syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1615recnd 11003 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
173recnd 11003 . . . . . . . 8 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
1816, 17, 173jca 1127 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ))
19 addass 10958 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
2018, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
2120eqcomd 2744 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
2213, 21eqtrd 2778 . . . 4 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
237, 22breqtrd 5100 . . 3 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
2415, 3jca 512 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
25 readdcl 10954 . . . . 5 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
2624, 25syl 17 . . . 4 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
271, 26, 3ltadd1d 11568 . . 3 (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
2823, 27mpbird 256 . 2 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
291, 26posdifd 11562 . 2 (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3028, 29mpbid 231 1 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205   / cdiv 11632  2c2 12028  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fl 13512
This theorem is referenced by:  dnibndlem9  34666
  Copyright terms: Public domain W3C validator