![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem5 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 35999. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem5 | ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | halfre 12464 | . . . . . . 7 ⊢ (1 / 2) ∈ ℝ | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ) |
4 | readdcl 11229 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) | |
5 | 1, 3, 4 | syl2anc2 583 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ) |
6 | flltp1 13805 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1)) |
8 | ax-1cn 11204 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
9 | 2halves 12478 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ((1 / 2) + (1 / 2)) = 1 |
11 | 10 | eqcomi 2737 | . . . . . . 7 ⊢ 1 = ((1 / 2) + (1 / 2)) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 1 = ((1 / 2) + (1 / 2))) |
13 | 12 | oveq2d 7442 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
14 | reflcl 13801 | . . . . . . . . . 10 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
15 | 5, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
16 | 15 | recnd 11280 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ) |
17 | 3 | recnd 11280 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ) |
18 | 16, 17, 17 | 3jca 1125 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) |
19 | addass 11233 | . . . . . . 7 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2)))) |
21 | 20 | eqcomd 2734 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
22 | 13, 21 | eqtrd 2768 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
23 | 7, 22 | breqtrd 5178 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))) |
24 | 15, 3 | jca 510 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ)) |
25 | readdcl 11229 | . . . . 5 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) | |
26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) |
27 | 1, 26, 3 | ltadd1d 11845 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))) |
28 | 23, 27 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) |
29 | 1, 26 | posdifd 11839 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) |
30 | 28, 29 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 + caddc 11149 < clt 11286 − cmin 11482 / cdiv 11909 2c2 12305 ⌊cfl 13795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fl 13797 |
This theorem is referenced by: dnibndlem9 35994 |
Copyright terms: Public domain | W3C validator |