Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem5 Structured version   Visualization version   GIF version

Theorem dnibndlem5 34356
Description: Lemma for dnibnd 34365. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Assertion
Ref Expression
dnibndlem5 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))

Proof of Theorem dnibndlem5
StepHypRef Expression
1 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2 halfre 12027 . . . . . . 7 (1 / 2) ∈ ℝ
32a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
4 readdcl 10795 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
51, 3, 4syl2anc2 588 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
6 flltp1 13358 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1))
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < ((⌊‘(𝐴 + (1 / 2))) + 1))
8 ax-1cn 10770 . . . . . . . . 9 1 ∈ ℂ
9 2halves 12041 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
108, 9ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
1110eqcomi 2743 . . . . . . 7 1 = ((1 / 2) + (1 / 2))
1211a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 1 = ((1 / 2) + (1 / 2)))
1312oveq2d 7218 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
14 reflcl 13354 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
155, 14syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1615recnd 10844 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
173recnd 10844 . . . . . . . 8 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
1816, 17, 173jca 1130 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ))
19 addass 10799 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
2018, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
2120eqcomd 2740 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
2213, 21eqtrd 2774 . . . 4 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
237, 22breqtrd 5069 . . 3 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
2415, 3jca 515 . . . . 5 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
25 readdcl 10795 . . . . 5 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
2624, 25syl 17 . . . 4 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
271, 26, 3ltadd1d 11408 . . 3 (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
2823, 27mpbird 260 . 2 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
291, 26posdifd 11402 . 2 (𝐴 ∈ ℝ → (𝐴 < ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3028, 29mpbid 235 1 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cmin 11045   / cdiv 11472  2c2 11868  cfl 13348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-fl 13350
This theorem is referenced by:  dnibndlem9  34360
  Copyright terms: Public domain W3C validator