Proof of Theorem 2xp3dxp2ge1d
Step | Hyp | Ref
| Expression |
1 | | 2xp3dxp2ge1d.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (-1[,)+∞)) |
2 | | neg1rr 12088 |
. . . . . . . . 9
⊢ -1 ∈
ℝ |
3 | | elicopnf 13177 |
. . . . . . . . 9
⊢ (-1
∈ ℝ → (𝑋
∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑋 ∈ (-1[,)+∞) ↔
(𝑋 ∈ ℝ ∧ -1
≤ 𝑋)) |
5 | 1, 4 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)) |
6 | 5 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
7 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
8 | | readdcl 10954 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ 2 ∈
ℝ) → (𝑋 + 2)
∈ ℝ) |
9 | 7, 8 | mpan2 688 |
. . . . . 6
⊢ (𝑋 ∈ ℝ → (𝑋 + 2) ∈
ℝ) |
10 | 6, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑋 + 2) ∈ ℝ) |
11 | | neg1cn 12087 |
. . . . . . . . . 10
⊢ -1 ∈
ℂ |
12 | | 2cn 12048 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
13 | | addcom 11161 |
. . . . . . . . . 10
⊢ ((-1
∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 +
-1)) |
14 | 11, 12, 13 | mp2an 689 |
. . . . . . . . 9
⊢ (-1 + 2)
= (2 + -1) |
15 | | ax-1cn 10929 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
16 | | negsub 11269 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 −
1)) |
17 | 12, 15, 16 | mp2an 689 |
. . . . . . . . 9
⊢ (2 + -1)
= (2 − 1) |
18 | | 2m1e1 12099 |
. . . . . . . . 9
⊢ (2
− 1) = 1 |
19 | 14, 17, 18 | 3eqtri 2770 |
. . . . . . . 8
⊢ (-1 + 2)
= 1 |
20 | 5 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → -1 ≤ 𝑋) |
21 | | leadd1 11443 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℝ ∧ 𝑋
∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2))) |
22 | 2, 7, 21 | mp3an13 1451 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℝ → (-1 ≤
𝑋 ↔ (-1 + 2) ≤
(𝑋 + 2))) |
23 | 6, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2))) |
24 | 20, 23 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (-1 + 2) ≤ (𝑋 + 2)) |
25 | 19, 24 | eqbrtrrid 5110 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ (𝑋 + 2)) |
26 | | 0lt1 11497 |
. . . . . . 7
⊢ 0 <
1 |
27 | 25, 26 | jctil 520 |
. . . . . 6
⊢ (𝜑 → (0 < 1 ∧ 1 ≤
(𝑋 + 2))) |
28 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
29 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
30 | | ltletr 11067 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1
∧ 1 ≤ (𝑋 + 2))
→ 0 < (𝑋 +
2))) |
31 | 28, 29, 30 | mp3an12 1450 |
. . . . . . 7
⊢ ((𝑋 + 2) ∈ ℝ → ((0
< 1 ∧ 1 ≤ (𝑋 +
2)) → 0 < (𝑋 +
2))) |
32 | 10, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((0 < 1 ∧ 1 ≤
(𝑋 + 2)) → 0 <
(𝑋 + 2))) |
33 | 27, 32 | mpd 15 |
. . . . 5
⊢ (𝜑 → 0 < (𝑋 + 2)) |
34 | 10, 33 | jca 512 |
. . . 4
⊢ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))) |
35 | | elrp 12732 |
. . . . 5
⊢ ((𝑋 + 2) ∈ ℝ+
↔ ((𝑋 + 2) ∈
ℝ ∧ 0 < (𝑋 +
2))) |
36 | 35 | imbi2i 336 |
. . . 4
⊢ ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔
(𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))) |
37 | 34, 36 | mpbir 230 |
. . 3
⊢ (𝜑 → (𝑋 + 2) ∈
ℝ+) |
38 | | remulcl 10956 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ 𝑋
∈ ℝ) → (2 · 𝑋) ∈ ℝ) |
39 | 7, 38 | mpan 687 |
. . . . 5
⊢ (𝑋 ∈ ℝ → (2
· 𝑋) ∈
ℝ) |
40 | 6, 39 | syl 17 |
. . . 4
⊢ (𝜑 → (2 · 𝑋) ∈
ℝ) |
41 | | 3re 12053 |
. . . . 5
⊢ 3 ∈
ℝ |
42 | | readdcl 10954 |
. . . . 5
⊢ (((2
· 𝑋) ∈ ℝ
∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ) |
43 | 41, 42 | mpan2 688 |
. . . 4
⊢ ((2
· 𝑋) ∈ ℝ
→ ((2 · 𝑋) + 3)
∈ ℝ) |
44 | 40, 43 | syl 17 |
. . 3
⊢ (𝜑 → ((2 · 𝑋) + 3) ∈
ℝ) |
45 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ) |
46 | | 1red 10976 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
47 | 40, 46 | readdcld 11004 |
. . . . 5
⊢ (𝜑 → ((2 · 𝑋) + 1) ∈
ℝ) |
48 | | recn 10961 |
. . . . . . . 8
⊢ (𝑋 ∈ ℝ → 𝑋 ∈
ℂ) |
49 | | addid1 11155 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) |
50 | 48, 49 | syl 17 |
. . . . . . 7
⊢ (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋) |
51 | 6, 50 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
52 | 11, 15 | addcomi 11166 |
. . . . . . . . . 10
⊢ (-1 + 1)
= (1 + -1) |
53 | 15 | negidi 11290 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
54 | 52, 53 | eqtri 2766 |
. . . . . . . . 9
⊢ (-1 + 1)
= 0 |
55 | | leadd1 11443 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℝ ∧ 𝑋
∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1))) |
56 | 2, 29, 55 | mp3an13 1451 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℝ → (-1 ≤
𝑋 ↔ (-1 + 1) ≤
(𝑋 + 1))) |
57 | 6, 56 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1))) |
58 | 20, 57 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (-1 + 1) ≤ (𝑋 + 1)) |
59 | 54, 58 | eqbrtrrid 5110 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (𝑋 + 1)) |
60 | | readdcl 10954 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑋 + 1)
∈ ℝ) |
61 | 29, 60 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℝ → (𝑋 + 1) ∈
ℝ) |
62 | 6, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + 1) ∈ ℝ) |
63 | 62, 6 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ)) |
64 | | leadd2 11444 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (𝑋 +
1) ∈ ℝ ∧ 𝑋
∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))) |
65 | 28, 64 | mp3an1 1447 |
. . . . . . . . 9
⊢ (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤
(𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))) |
66 | 63, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))) |
67 | 59, 66 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))) |
68 | 6, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℂ) |
69 | 68 | 2timesd 12216 |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋)) |
70 | 69 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1)) |
71 | | addass 10958 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1))) |
72 | 15, 71 | mp3an3 1449 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1))) |
73 | 72 | anidms 567 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1))) |
74 | 68, 73 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1))) |
75 | 70, 74 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1))) |
76 | 67, 75 | breqtrrd 5102 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1)) |
77 | 51, 76 | eqbrtrrd 5098 |
. . . . 5
⊢ (𝜑 → 𝑋 ≤ ((2 · 𝑋) + 1)) |
78 | 45 | leidd 11541 |
. . . . 5
⊢ (𝜑 → 2 ≤ 2) |
79 | 6, 45, 47, 45, 77, 78 | le2addd 11594 |
. . . 4
⊢ (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2)) |
80 | 40 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (2 · 𝑋) ∈
ℂ) |
81 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
82 | 12 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
83 | 80, 81, 82 | addassd 10997 |
. . . . 5
⊢ (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2))) |
84 | | 1p2e3 12116 |
. . . . . 6
⊢ (1 + 2) =
3 |
85 | | oveq2 7283 |
. . . . . 6
⊢ ((1 + 2)
= 3 → ((2 · 𝑋)
+ (1 + 2)) = ((2 · 𝑋) + 3)) |
86 | 84, 85 | ax-mp 5 |
. . . . 5
⊢ ((2
· 𝑋) + (1 + 2)) =
((2 · 𝑋) +
3) |
87 | 83, 86 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3)) |
88 | 79, 87 | breqtrd 5100 |
. . 3
⊢ (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) |
89 | 37, 44, 88 | 3jca 1127 |
. 2
⊢ (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2
· 𝑋) + 3) ∈
ℝ ∧ (𝑋 + 2) ≤
((2 · 𝑋) +
3))) |
90 | | divge1 12798 |
. 2
⊢ (((𝑋 + 2) ∈ ℝ+
∧ ((2 · 𝑋) + 3)
∈ ℝ ∧ (𝑋 +
2) ≤ ((2 · 𝑋) +
3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2))) |
91 | 89, 90 | syl 17 |
1
⊢ (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2))) |