Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2xp3dxp2ge1d Structured version   Visualization version   GIF version

Theorem 2xp3dxp2ge1d 40142
Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
Hypothesis
Ref Expression
2xp3dxp2ge1d.1 (𝜑𝑋 ∈ (-1[,)+∞))
Assertion
Ref Expression
2xp3dxp2ge1d (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))

Proof of Theorem 2xp3dxp2ge1d
StepHypRef Expression
1 2xp3dxp2ge1d.1 . . . . . . . 8 (𝜑𝑋 ∈ (-1[,)+∞))
2 neg1rr 12071 . . . . . . . . 9 -1 ∈ ℝ
3 elicopnf 13159 . . . . . . . . 9 (-1 ∈ ℝ → (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)))
42, 3ax-mp 5 . . . . . . . 8 (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
51, 4sylib 217 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
65simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ)
7 2re 12030 . . . . . . 7 2 ∈ ℝ
8 readdcl 10938 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑋 + 2) ∈ ℝ)
97, 8mpan2 687 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 + 2) ∈ ℝ)
106, 9syl 17 . . . . 5 (𝜑 → (𝑋 + 2) ∈ ℝ)
11 neg1cn 12070 . . . . . . . . . 10 -1 ∈ ℂ
12 2cn 12031 . . . . . . . . . 10 2 ∈ ℂ
13 addcom 11144 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 + -1))
1411, 12, 13mp2an 688 . . . . . . . . 9 (-1 + 2) = (2 + -1)
15 ax-1cn 10913 . . . . . . . . . 10 1 ∈ ℂ
16 negsub 11252 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 − 1))
1712, 15, 16mp2an 688 . . . . . . . . 9 (2 + -1) = (2 − 1)
18 2m1e1 12082 . . . . . . . . 9 (2 − 1) = 1
1914, 17, 183eqtri 2771 . . . . . . . 8 (-1 + 2) = 1
205simprd 495 . . . . . . . . 9 (𝜑 → -1 ≤ 𝑋)
21 leadd1 11426 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
222, 7, 21mp3an13 1450 . . . . . . . . . 10 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
236, 22syl 17 . . . . . . . . 9 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
2420, 23mpbid 231 . . . . . . . 8 (𝜑 → (-1 + 2) ≤ (𝑋 + 2))
2519, 24eqbrtrrid 5114 . . . . . . 7 (𝜑 → 1 ≤ (𝑋 + 2))
26 0lt1 11480 . . . . . . 7 0 < 1
2725, 26jctil 519 . . . . . 6 (𝜑 → (0 < 1 ∧ 1 ≤ (𝑋 + 2)))
28 0re 10961 . . . . . . . 8 0 ∈ ℝ
29 1re 10959 . . . . . . . 8 1 ∈ ℝ
30 ltletr 11050 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3128, 29, 30mp3an12 1449 . . . . . . 7 ((𝑋 + 2) ∈ ℝ → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3210, 31syl 17 . . . . . 6 (𝜑 → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3327, 32mpd 15 . . . . 5 (𝜑 → 0 < (𝑋 + 2))
3410, 33jca 511 . . . 4 (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
35 elrp 12714 . . . . 5 ((𝑋 + 2) ∈ ℝ+ ↔ ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
3635imbi2i 335 . . . 4 ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))))
3734, 36mpbir 230 . . 3 (𝜑 → (𝑋 + 2) ∈ ℝ+)
38 remulcl 10940 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
397, 38mpan 686 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
406, 39syl 17 . . . 4 (𝜑 → (2 · 𝑋) ∈ ℝ)
41 3re 12036 . . . . 5 3 ∈ ℝ
42 readdcl 10938 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ)
4341, 42mpan2 687 . . . 4 ((2 · 𝑋) ∈ ℝ → ((2 · 𝑋) + 3) ∈ ℝ)
4440, 43syl 17 . . 3 (𝜑 → ((2 · 𝑋) + 3) ∈ ℝ)
457a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
46 1red 10960 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4740, 46readdcld 10988 . . . . 5 (𝜑 → ((2 · 𝑋) + 1) ∈ ℝ)
48 recn 10945 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
49 addid1 11138 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
5048, 49syl 17 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋)
516, 50syl 17 . . . . . 6 (𝜑 → (𝑋 + 0) = 𝑋)
5211, 15addcomi 11149 . . . . . . . . . 10 (-1 + 1) = (1 + -1)
5315negidi 11273 . . . . . . . . . 10 (1 + -1) = 0
5452, 53eqtri 2767 . . . . . . . . 9 (-1 + 1) = 0
55 leadd1 11426 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
562, 29, 55mp3an13 1450 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
576, 56syl 17 . . . . . . . . . 10 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
5820, 57mpbid 231 . . . . . . . . 9 (𝜑 → (-1 + 1) ≤ (𝑋 + 1))
5954, 58eqbrtrrid 5114 . . . . . . . 8 (𝜑 → 0 ≤ (𝑋 + 1))
60 readdcl 10938 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑋 + 1) ∈ ℝ)
6129, 60mpan2 687 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
626, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 + 1) ∈ ℝ)
6362, 6jca 511 . . . . . . . . 9 (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ))
64 leadd2 11427 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6528, 64mp3an1 1446 . . . . . . . . 9 (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6663, 65syl 17 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6759, 66mpbid 231 . . . . . . 7 (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))
686, 48syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
69682timesd 12199 . . . . . . . . 9 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
7069oveq1d 7283 . . . . . . . 8 (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1))
71 addass 10942 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7215, 71mp3an3 1448 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7372anidms 566 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7468, 73syl 17 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7570, 74eqtrd 2779 . . . . . . 7 (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7667, 75breqtrrd 5106 . . . . . 6 (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1))
7751, 76eqbrtrrd 5102 . . . . 5 (𝜑𝑋 ≤ ((2 · 𝑋) + 1))
7845leidd 11524 . . . . 5 (𝜑 → 2 ≤ 2)
796, 45, 47, 45, 77, 78le2addd 11577 . . . 4 (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2))
8040recnd 10987 . . . . . 6 (𝜑 → (2 · 𝑋) ∈ ℂ)
8115a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
8212a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
8380, 81, 82addassd 10981 . . . . 5 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2)))
84 1p2e3 12099 . . . . . 6 (1 + 2) = 3
85 oveq2 7276 . . . . . 6 ((1 + 2) = 3 → ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3))
8684, 85ax-mp 5 . . . . 5 ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3)
8783, 86eqtrdi 2795 . . . 4 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3))
8879, 87breqtrd 5104 . . 3 (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3))
8937, 44, 883jca 1126 . 2 (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)))
90 divge1 12780 . 2 (((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
9189, 90syl 17 1 (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  +∞cpnf 10990   < clt 10993  cle 10994  cmin 11188  -cneg 11189   / cdiv 11615  2c2 12011  3c3 12012  +crp 12712  [,)cico 13063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019  df-3 12020  df-rp 12713  df-ico 13067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator