Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2xp3dxp2ge1d Structured version   Visualization version   GIF version

Theorem 2xp3dxp2ge1d 40090
Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
Hypothesis
Ref Expression
2xp3dxp2ge1d.1 (𝜑𝑋 ∈ (-1[,)+∞))
Assertion
Ref Expression
2xp3dxp2ge1d (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))

Proof of Theorem 2xp3dxp2ge1d
StepHypRef Expression
1 2xp3dxp2ge1d.1 . . . . . . . 8 (𝜑𝑋 ∈ (-1[,)+∞))
2 neg1rr 12018 . . . . . . . . 9 -1 ∈ ℝ
3 elicopnf 13106 . . . . . . . . 9 (-1 ∈ ℝ → (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)))
42, 3ax-mp 5 . . . . . . . 8 (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
51, 4sylib 217 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
65simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ)
7 2re 11977 . . . . . . 7 2 ∈ ℝ
8 readdcl 10885 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑋 + 2) ∈ ℝ)
97, 8mpan2 687 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 + 2) ∈ ℝ)
106, 9syl 17 . . . . 5 (𝜑 → (𝑋 + 2) ∈ ℝ)
11 neg1cn 12017 . . . . . . . . . 10 -1 ∈ ℂ
12 2cn 11978 . . . . . . . . . 10 2 ∈ ℂ
13 addcom 11091 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 + -1))
1411, 12, 13mp2an 688 . . . . . . . . 9 (-1 + 2) = (2 + -1)
15 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
16 negsub 11199 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 − 1))
1712, 15, 16mp2an 688 . . . . . . . . 9 (2 + -1) = (2 − 1)
18 2m1e1 12029 . . . . . . . . 9 (2 − 1) = 1
1914, 17, 183eqtri 2770 . . . . . . . 8 (-1 + 2) = 1
205simprd 495 . . . . . . . . 9 (𝜑 → -1 ≤ 𝑋)
21 leadd1 11373 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
222, 7, 21mp3an13 1450 . . . . . . . . . 10 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
236, 22syl 17 . . . . . . . . 9 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
2420, 23mpbid 231 . . . . . . . 8 (𝜑 → (-1 + 2) ≤ (𝑋 + 2))
2519, 24eqbrtrrid 5106 . . . . . . 7 (𝜑 → 1 ≤ (𝑋 + 2))
26 0lt1 11427 . . . . . . 7 0 < 1
2725, 26jctil 519 . . . . . 6 (𝜑 → (0 < 1 ∧ 1 ≤ (𝑋 + 2)))
28 0re 10908 . . . . . . . 8 0 ∈ ℝ
29 1re 10906 . . . . . . . 8 1 ∈ ℝ
30 ltletr 10997 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3128, 29, 30mp3an12 1449 . . . . . . 7 ((𝑋 + 2) ∈ ℝ → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3210, 31syl 17 . . . . . 6 (𝜑 → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3327, 32mpd 15 . . . . 5 (𝜑 → 0 < (𝑋 + 2))
3410, 33jca 511 . . . 4 (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
35 elrp 12661 . . . . 5 ((𝑋 + 2) ∈ ℝ+ ↔ ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
3635imbi2i 335 . . . 4 ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))))
3734, 36mpbir 230 . . 3 (𝜑 → (𝑋 + 2) ∈ ℝ+)
38 remulcl 10887 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
397, 38mpan 686 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
406, 39syl 17 . . . 4 (𝜑 → (2 · 𝑋) ∈ ℝ)
41 3re 11983 . . . . 5 3 ∈ ℝ
42 readdcl 10885 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ)
4341, 42mpan2 687 . . . 4 ((2 · 𝑋) ∈ ℝ → ((2 · 𝑋) + 3) ∈ ℝ)
4440, 43syl 17 . . 3 (𝜑 → ((2 · 𝑋) + 3) ∈ ℝ)
457a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
46 1red 10907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4740, 46readdcld 10935 . . . . 5 (𝜑 → ((2 · 𝑋) + 1) ∈ ℝ)
48 recn 10892 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
49 addid1 11085 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
5048, 49syl 17 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋)
516, 50syl 17 . . . . . 6 (𝜑 → (𝑋 + 0) = 𝑋)
5211, 15addcomi 11096 . . . . . . . . . 10 (-1 + 1) = (1 + -1)
5315negidi 11220 . . . . . . . . . 10 (1 + -1) = 0
5452, 53eqtri 2766 . . . . . . . . 9 (-1 + 1) = 0
55 leadd1 11373 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
562, 29, 55mp3an13 1450 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
576, 56syl 17 . . . . . . . . . 10 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
5820, 57mpbid 231 . . . . . . . . 9 (𝜑 → (-1 + 1) ≤ (𝑋 + 1))
5954, 58eqbrtrrid 5106 . . . . . . . 8 (𝜑 → 0 ≤ (𝑋 + 1))
60 readdcl 10885 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑋 + 1) ∈ ℝ)
6129, 60mpan2 687 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
626, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 + 1) ∈ ℝ)
6362, 6jca 511 . . . . . . . . 9 (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ))
64 leadd2 11374 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6528, 64mp3an1 1446 . . . . . . . . 9 (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6663, 65syl 17 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6759, 66mpbid 231 . . . . . . 7 (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))
686, 48syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
69682timesd 12146 . . . . . . . . 9 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
7069oveq1d 7270 . . . . . . . 8 (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1))
71 addass 10889 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7215, 71mp3an3 1448 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7372anidms 566 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7468, 73syl 17 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7570, 74eqtrd 2778 . . . . . . 7 (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7667, 75breqtrrd 5098 . . . . . 6 (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1))
7751, 76eqbrtrrd 5094 . . . . 5 (𝜑𝑋 ≤ ((2 · 𝑋) + 1))
7845leidd 11471 . . . . 5 (𝜑 → 2 ≤ 2)
796, 45, 47, 45, 77, 78le2addd 11524 . . . 4 (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2))
8040recnd 10934 . . . . . 6 (𝜑 → (2 · 𝑋) ∈ ℂ)
8115a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
8212a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
8380, 81, 82addassd 10928 . . . . 5 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2)))
84 1p2e3 12046 . . . . . 6 (1 + 2) = 3
85 oveq2 7263 . . . . . 6 ((1 + 2) = 3 → ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3))
8684, 85ax-mp 5 . . . . 5 ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3)
8783, 86eqtrdi 2795 . . . 4 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3))
8879, 87breqtrd 5096 . . 3 (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3))
8937, 44, 883jca 1126 . 2 (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)))
90 divge1 12727 . 2 (((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
9189, 90syl 17 1 (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  3c3 11959  +crp 12659  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-3 11967  df-rp 12660  df-ico 13014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator