Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2xp3dxp2ge1d Structured version   Visualization version   GIF version

Theorem 2xp3dxp2ge1d 42242
Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
Hypothesis
Ref Expression
2xp3dxp2ge1d.1 (𝜑𝑋 ∈ (-1[,)+∞))
Assertion
Ref Expression
2xp3dxp2ge1d (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))

Proof of Theorem 2xp3dxp2ge1d
StepHypRef Expression
1 2xp3dxp2ge1d.1 . . . . . . . 8 (𝜑𝑋 ∈ (-1[,)+∞))
2 neg1rr 12381 . . . . . . . . 9 -1 ∈ ℝ
3 elicopnf 13485 . . . . . . . . 9 (-1 ∈ ℝ → (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)))
42, 3ax-mp 5 . . . . . . . 8 (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
51, 4sylib 218 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
65simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ)
7 2re 12340 . . . . . . 7 2 ∈ ℝ
8 readdcl 11238 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑋 + 2) ∈ ℝ)
97, 8mpan2 691 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 + 2) ∈ ℝ)
106, 9syl 17 . . . . 5 (𝜑 → (𝑋 + 2) ∈ ℝ)
11 neg1cn 12380 . . . . . . . . . 10 -1 ∈ ℂ
12 2cn 12341 . . . . . . . . . 10 2 ∈ ℂ
13 addcom 11447 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 + -1))
1411, 12, 13mp2an 692 . . . . . . . . 9 (-1 + 2) = (2 + -1)
15 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
16 negsub 11557 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 − 1))
1712, 15, 16mp2an 692 . . . . . . . . 9 (2 + -1) = (2 − 1)
18 2m1e1 12392 . . . . . . . . 9 (2 − 1) = 1
1914, 17, 183eqtri 2769 . . . . . . . 8 (-1 + 2) = 1
205simprd 495 . . . . . . . . 9 (𝜑 → -1 ≤ 𝑋)
21 leadd1 11731 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
222, 7, 21mp3an13 1454 . . . . . . . . . 10 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
236, 22syl 17 . . . . . . . . 9 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
2420, 23mpbid 232 . . . . . . . 8 (𝜑 → (-1 + 2) ≤ (𝑋 + 2))
2519, 24eqbrtrrid 5179 . . . . . . 7 (𝜑 → 1 ≤ (𝑋 + 2))
26 0lt1 11785 . . . . . . 7 0 < 1
2725, 26jctil 519 . . . . . 6 (𝜑 → (0 < 1 ∧ 1 ≤ (𝑋 + 2)))
28 0re 11263 . . . . . . . 8 0 ∈ ℝ
29 1re 11261 . . . . . . . 8 1 ∈ ℝ
30 ltletr 11353 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3128, 29, 30mp3an12 1453 . . . . . . 7 ((𝑋 + 2) ∈ ℝ → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3210, 31syl 17 . . . . . 6 (𝜑 → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3327, 32mpd 15 . . . . 5 (𝜑 → 0 < (𝑋 + 2))
3410, 33jca 511 . . . 4 (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
35 elrp 13036 . . . . 5 ((𝑋 + 2) ∈ ℝ+ ↔ ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
3635imbi2i 336 . . . 4 ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))))
3734, 36mpbir 231 . . 3 (𝜑 → (𝑋 + 2) ∈ ℝ+)
38 remulcl 11240 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
397, 38mpan 690 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
406, 39syl 17 . . . 4 (𝜑 → (2 · 𝑋) ∈ ℝ)
41 3re 12346 . . . . 5 3 ∈ ℝ
42 readdcl 11238 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ)
4341, 42mpan2 691 . . . 4 ((2 · 𝑋) ∈ ℝ → ((2 · 𝑋) + 3) ∈ ℝ)
4440, 43syl 17 . . 3 (𝜑 → ((2 · 𝑋) + 3) ∈ ℝ)
457a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
46 1red 11262 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4740, 46readdcld 11290 . . . . 5 (𝜑 → ((2 · 𝑋) + 1) ∈ ℝ)
48 recn 11245 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
49 addrid 11441 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
5048, 49syl 17 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋)
516, 50syl 17 . . . . . 6 (𝜑 → (𝑋 + 0) = 𝑋)
5211, 15addcomi 11452 . . . . . . . . . 10 (-1 + 1) = (1 + -1)
5315negidi 11578 . . . . . . . . . 10 (1 + -1) = 0
5452, 53eqtri 2765 . . . . . . . . 9 (-1 + 1) = 0
55 leadd1 11731 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
562, 29, 55mp3an13 1454 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
576, 56syl 17 . . . . . . . . . 10 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
5820, 57mpbid 232 . . . . . . . . 9 (𝜑 → (-1 + 1) ≤ (𝑋 + 1))
5954, 58eqbrtrrid 5179 . . . . . . . 8 (𝜑 → 0 ≤ (𝑋 + 1))
60 readdcl 11238 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑋 + 1) ∈ ℝ)
6129, 60mpan2 691 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
626, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 + 1) ∈ ℝ)
6362, 6jca 511 . . . . . . . . 9 (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ))
64 leadd2 11732 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6528, 64mp3an1 1450 . . . . . . . . 9 (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6663, 65syl 17 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6759, 66mpbid 232 . . . . . . 7 (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))
686, 48syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
69682timesd 12509 . . . . . . . . 9 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
7069oveq1d 7446 . . . . . . . 8 (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1))
71 addass 11242 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7215, 71mp3an3 1452 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7372anidms 566 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7468, 73syl 17 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7570, 74eqtrd 2777 . . . . . . 7 (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7667, 75breqtrrd 5171 . . . . . 6 (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1))
7751, 76eqbrtrrd 5167 . . . . 5 (𝜑𝑋 ≤ ((2 · 𝑋) + 1))
7845leidd 11829 . . . . 5 (𝜑 → 2 ≤ 2)
796, 45, 47, 45, 77, 78le2addd 11882 . . . 4 (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2))
8040recnd 11289 . . . . . 6 (𝜑 → (2 · 𝑋) ∈ ℂ)
8115a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
8212a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
8380, 81, 82addassd 11283 . . . . 5 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2)))
84 1p2e3 12409 . . . . . 6 (1 + 2) = 3
85 oveq2 7439 . . . . . 6 ((1 + 2) = 3 → ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3))
8684, 85ax-mp 5 . . . . 5 ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3)
8783, 86eqtrdi 2793 . . . 4 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3))
8879, 87breqtrd 5169 . . 3 (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3))
8937, 44, 883jca 1129 . 2 (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)))
90 divge1 13103 . 2 (((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
9189, 90syl 17 1 (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  3c3 12322  +crp 13034  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-3 12330  df-rp 13035  df-ico 13393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator