Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2xp3dxp2ge1d Structured version   Visualization version   GIF version

Theorem 2xp3dxp2ge1d 39327
 Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
Hypothesis
Ref Expression
2xp3dxp2ge1d.1 (𝜑𝑋 ∈ (-1[,)+∞))
Assertion
Ref Expression
2xp3dxp2ge1d (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))

Proof of Theorem 2xp3dxp2ge1d
StepHypRef Expression
1 2xp3dxp2ge1d.1 . . . . . . . 8 (𝜑𝑋 ∈ (-1[,)+∞))
2 neg1rr 11749 . . . . . . . . 9 -1 ∈ ℝ
3 elicopnf 12832 . . . . . . . . 9 (-1 ∈ ℝ → (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)))
42, 3ax-mp 5 . . . . . . . 8 (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
51, 4sylib 221 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
65simpld 498 . . . . . 6 (𝜑𝑋 ∈ ℝ)
7 2re 11708 . . . . . . 7 2 ∈ ℝ
8 readdcl 10618 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑋 + 2) ∈ ℝ)
97, 8mpan2 690 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 + 2) ∈ ℝ)
106, 9syl 17 . . . . 5 (𝜑 → (𝑋 + 2) ∈ ℝ)
11 neg1cn 11748 . . . . . . . . . 10 -1 ∈ ℂ
12 2cn 11709 . . . . . . . . . 10 2 ∈ ℂ
13 addcom 10824 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 + -1))
1411, 12, 13mp2an 691 . . . . . . . . 9 (-1 + 2) = (2 + -1)
15 ax-1cn 10593 . . . . . . . . . 10 1 ∈ ℂ
16 negsub 10932 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 − 1))
1712, 15, 16mp2an 691 . . . . . . . . 9 (2 + -1) = (2 − 1)
18 2m1e1 11760 . . . . . . . . 9 (2 − 1) = 1
1914, 17, 183eqtri 2851 . . . . . . . 8 (-1 + 2) = 1
205simprd 499 . . . . . . . . 9 (𝜑 → -1 ≤ 𝑋)
21 leadd1 11106 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
222, 7, 21mp3an13 1449 . . . . . . . . . 10 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
236, 22syl 17 . . . . . . . . 9 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
2420, 23mpbid 235 . . . . . . . 8 (𝜑 → (-1 + 2) ≤ (𝑋 + 2))
2519, 24eqbrtrrid 5088 . . . . . . 7 (𝜑 → 1 ≤ (𝑋 + 2))
26 0lt1 11160 . . . . . . 7 0 < 1
2725, 26jctil 523 . . . . . 6 (𝜑 → (0 < 1 ∧ 1 ≤ (𝑋 + 2)))
28 0re 10641 . . . . . . . 8 0 ∈ ℝ
29 1re 10639 . . . . . . . 8 1 ∈ ℝ
30 ltletr 10730 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3128, 29, 30mp3an12 1448 . . . . . . 7 ((𝑋 + 2) ∈ ℝ → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3210, 31syl 17 . . . . . 6 (𝜑 → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3327, 32mpd 15 . . . . 5 (𝜑 → 0 < (𝑋 + 2))
3410, 33jca 515 . . . 4 (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
35 elrp 12388 . . . . 5 ((𝑋 + 2) ∈ ℝ+ ↔ ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
3635imbi2i 339 . . . 4 ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))))
3734, 36mpbir 234 . . 3 (𝜑 → (𝑋 + 2) ∈ ℝ+)
38 remulcl 10620 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
397, 38mpan 689 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
406, 39syl 17 . . . 4 (𝜑 → (2 · 𝑋) ∈ ℝ)
41 3re 11714 . . . . 5 3 ∈ ℝ
42 readdcl 10618 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ)
4341, 42mpan2 690 . . . 4 ((2 · 𝑋) ∈ ℝ → ((2 · 𝑋) + 3) ∈ ℝ)
4440, 43syl 17 . . 3 (𝜑 → ((2 · 𝑋) + 3) ∈ ℝ)
457a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
46 1red 10640 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4740, 46readdcld 10668 . . . . 5 (𝜑 → ((2 · 𝑋) + 1) ∈ ℝ)
48 recn 10625 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
49 addid1 10818 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
5048, 49syl 17 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋)
516, 50syl 17 . . . . . 6 (𝜑 → (𝑋 + 0) = 𝑋)
5211, 15addcomi 10829 . . . . . . . . . 10 (-1 + 1) = (1 + -1)
5315negidi 10953 . . . . . . . . . 10 (1 + -1) = 0
5452, 53eqtri 2847 . . . . . . . . 9 (-1 + 1) = 0
55 leadd1 11106 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
562, 29, 55mp3an13 1449 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
576, 56syl 17 . . . . . . . . . 10 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
5820, 57mpbid 235 . . . . . . . . 9 (𝜑 → (-1 + 1) ≤ (𝑋 + 1))
5954, 58eqbrtrrid 5088 . . . . . . . 8 (𝜑 → 0 ≤ (𝑋 + 1))
60 readdcl 10618 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑋 + 1) ∈ ℝ)
6129, 60mpan2 690 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
626, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 + 1) ∈ ℝ)
6362, 6jca 515 . . . . . . . . 9 (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ))
64 leadd2 11107 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6528, 64mp3an1 1445 . . . . . . . . 9 (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6663, 65syl 17 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6759, 66mpbid 235 . . . . . . 7 (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))
686, 48syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
69682timesd 11877 . . . . . . . . 9 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
7069oveq1d 7164 . . . . . . . 8 (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1))
71 addass 10622 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7215, 71mp3an3 1447 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7372anidms 570 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7468, 73syl 17 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7570, 74eqtrd 2859 . . . . . . 7 (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7667, 75breqtrrd 5080 . . . . . 6 (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1))
7751, 76eqbrtrrd 5076 . . . . 5 (𝜑𝑋 ≤ ((2 · 𝑋) + 1))
7845leidd 11204 . . . . 5 (𝜑 → 2 ≤ 2)
796, 45, 47, 45, 77, 78le2addd 11257 . . . 4 (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2))
8040recnd 10667 . . . . . 6 (𝜑 → (2 · 𝑋) ∈ ℂ)
8115a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
8212a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
8380, 81, 82addassd 10661 . . . . 5 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2)))
84 1p2e3 11777 . . . . . 6 (1 + 2) = 3
85 oveq2 7157 . . . . . 6 ((1 + 2) = 3 → ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3))
8684, 85ax-mp 5 . . . . 5 ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3)
8783, 86syl6eq 2875 . . . 4 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3))
8879, 87breqtrd 5078 . . 3 (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3))
8937, 44, 883jca 1125 . 2 (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)))
90 divge1 12454 . 2 (((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
9189, 90syl 17 1 (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5052  (class class class)co 7149  ℂcc 10533  ℝcr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540  +∞cpnf 10670   < clt 10673   ≤ cle 10674   − cmin 10868  -cneg 10869   / cdiv 11295  2c2 11689  3c3 11690  ℝ+crp 12386  [,)cico 12737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-2 11697  df-3 11698  df-rp 12387  df-ico 12741 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator