Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2xp3dxp2ge1d Structured version   Visualization version   GIF version

Theorem 2xp3dxp2ge1d 42223
Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
Hypothesis
Ref Expression
2xp3dxp2ge1d.1 (𝜑𝑋 ∈ (-1[,)+∞))
Assertion
Ref Expression
2xp3dxp2ge1d (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))

Proof of Theorem 2xp3dxp2ge1d
StepHypRef Expression
1 2xp3dxp2ge1d.1 . . . . . . . 8 (𝜑𝑋 ∈ (-1[,)+∞))
2 neg1rr 12379 . . . . . . . . 9 -1 ∈ ℝ
3 elicopnf 13482 . . . . . . . . 9 (-1 ∈ ℝ → (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋)))
42, 3ax-mp 5 . . . . . . . 8 (𝑋 ∈ (-1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
51, 4sylib 218 . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ ∧ -1 ≤ 𝑋))
65simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ)
7 2re 12338 . . . . . . 7 2 ∈ ℝ
8 readdcl 11236 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑋 + 2) ∈ ℝ)
97, 8mpan2 691 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 + 2) ∈ ℝ)
106, 9syl 17 . . . . 5 (𝜑 → (𝑋 + 2) ∈ ℝ)
11 neg1cn 12378 . . . . . . . . . 10 -1 ∈ ℂ
12 2cn 12339 . . . . . . . . . 10 2 ∈ ℂ
13 addcom 11445 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 2 ∈ ℂ) → (-1 + 2) = (2 + -1))
1411, 12, 13mp2an 692 . . . . . . . . 9 (-1 + 2) = (2 + -1)
15 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
16 negsub 11555 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → (2 + -1) = (2 − 1))
1712, 15, 16mp2an 692 . . . . . . . . 9 (2 + -1) = (2 − 1)
18 2m1e1 12390 . . . . . . . . 9 (2 − 1) = 1
1914, 17, 183eqtri 2767 . . . . . . . 8 (-1 + 2) = 1
205simprd 495 . . . . . . . . 9 (𝜑 → -1 ≤ 𝑋)
21 leadd1 11729 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
222, 7, 21mp3an13 1451 . . . . . . . . . 10 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
236, 22syl 17 . . . . . . . . 9 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 2) ≤ (𝑋 + 2)))
2420, 23mpbid 232 . . . . . . . 8 (𝜑 → (-1 + 2) ≤ (𝑋 + 2))
2519, 24eqbrtrrid 5184 . . . . . . 7 (𝜑 → 1 ≤ (𝑋 + 2))
26 0lt1 11783 . . . . . . 7 0 < 1
2725, 26jctil 519 . . . . . 6 (𝜑 → (0 < 1 ∧ 1 ≤ (𝑋 + 2)))
28 0re 11261 . . . . . . . 8 0 ∈ ℝ
29 1re 11259 . . . . . . . 8 1 ∈ ℝ
30 ltletr 11351 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑋 + 2) ∈ ℝ) → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3128, 29, 30mp3an12 1450 . . . . . . 7 ((𝑋 + 2) ∈ ℝ → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3210, 31syl 17 . . . . . 6 (𝜑 → ((0 < 1 ∧ 1 ≤ (𝑋 + 2)) → 0 < (𝑋 + 2)))
3327, 32mpd 15 . . . . 5 (𝜑 → 0 < (𝑋 + 2))
3410, 33jca 511 . . . 4 (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
35 elrp 13034 . . . . 5 ((𝑋 + 2) ∈ ℝ+ ↔ ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2)))
3635imbi2i 336 . . . 4 ((𝜑 → (𝑋 + 2) ∈ ℝ+) ↔ (𝜑 → ((𝑋 + 2) ∈ ℝ ∧ 0 < (𝑋 + 2))))
3734, 36mpbir 231 . . 3 (𝜑 → (𝑋 + 2) ∈ ℝ+)
38 remulcl 11238 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
397, 38mpan 690 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
406, 39syl 17 . . . 4 (𝜑 → (2 · 𝑋) ∈ ℝ)
41 3re 12344 . . . . 5 3 ∈ ℝ
42 readdcl 11236 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑋) + 3) ∈ ℝ)
4341, 42mpan2 691 . . . 4 ((2 · 𝑋) ∈ ℝ → ((2 · 𝑋) + 3) ∈ ℝ)
4440, 43syl 17 . . 3 (𝜑 → ((2 · 𝑋) + 3) ∈ ℝ)
457a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
46 1red 11260 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4740, 46readdcld 11288 . . . . 5 (𝜑 → ((2 · 𝑋) + 1) ∈ ℝ)
48 recn 11243 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
49 addrid 11439 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
5048, 49syl 17 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 0) = 𝑋)
516, 50syl 17 . . . . . 6 (𝜑 → (𝑋 + 0) = 𝑋)
5211, 15addcomi 11450 . . . . . . . . . 10 (-1 + 1) = (1 + -1)
5315negidi 11576 . . . . . . . . . 10 (1 + -1) = 0
5452, 53eqtri 2763 . . . . . . . . 9 (-1 + 1) = 0
55 leadd1 11729 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
562, 29, 55mp3an13 1451 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
576, 56syl 17 . . . . . . . . . 10 (𝜑 → (-1 ≤ 𝑋 ↔ (-1 + 1) ≤ (𝑋 + 1)))
5820, 57mpbid 232 . . . . . . . . 9 (𝜑 → (-1 + 1) ≤ (𝑋 + 1))
5954, 58eqbrtrrid 5184 . . . . . . . 8 (𝜑 → 0 ≤ (𝑋 + 1))
60 readdcl 11236 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑋 + 1) ∈ ℝ)
6129, 60mpan2 691 . . . . . . . . . . 11 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
626, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 + 1) ∈ ℝ)
6362, 6jca 511 . . . . . . . . 9 (𝜑 → ((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ))
64 leadd2 11730 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6528, 64mp3an1 1447 . . . . . . . . 9 (((𝑋 + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6663, 65syl 17 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 + 1) ↔ (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1))))
6759, 66mpbid 232 . . . . . . 7 (𝜑 → (𝑋 + 0) ≤ (𝑋 + (𝑋 + 1)))
686, 48syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
69682timesd 12507 . . . . . . . . 9 (𝜑 → (2 · 𝑋) = (𝑋 + 𝑋))
7069oveq1d 7446 . . . . . . . 8 (𝜑 → ((2 · 𝑋) + 1) = ((𝑋 + 𝑋) + 1))
71 addass 11240 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7215, 71mp3an3 1449 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7372anidms 566 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7468, 73syl 17 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7570, 74eqtrd 2775 . . . . . . 7 (𝜑 → ((2 · 𝑋) + 1) = (𝑋 + (𝑋 + 1)))
7667, 75breqtrrd 5176 . . . . . 6 (𝜑 → (𝑋 + 0) ≤ ((2 · 𝑋) + 1))
7751, 76eqbrtrrd 5172 . . . . 5 (𝜑𝑋 ≤ ((2 · 𝑋) + 1))
7845leidd 11827 . . . . 5 (𝜑 → 2 ≤ 2)
796, 45, 47, 45, 77, 78le2addd 11880 . . . 4 (𝜑 → (𝑋 + 2) ≤ (((2 · 𝑋) + 1) + 2))
8040recnd 11287 . . . . . 6 (𝜑 → (2 · 𝑋) ∈ ℂ)
8115a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
8212a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
8380, 81, 82addassd 11281 . . . . 5 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + (1 + 2)))
84 1p2e3 12407 . . . . . 6 (1 + 2) = 3
85 oveq2 7439 . . . . . 6 ((1 + 2) = 3 → ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3))
8684, 85ax-mp 5 . . . . 5 ((2 · 𝑋) + (1 + 2)) = ((2 · 𝑋) + 3)
8783, 86eqtrdi 2791 . . . 4 (𝜑 → (((2 · 𝑋) + 1) + 2) = ((2 · 𝑋) + 3))
8879, 87breqtrd 5174 . . 3 (𝜑 → (𝑋 + 2) ≤ ((2 · 𝑋) + 3))
8937, 44, 883jca 1127 . 2 (𝜑 → ((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)))
90 divge1 13101 . 2 (((𝑋 + 2) ∈ ℝ+ ∧ ((2 · 𝑋) + 3) ∈ ℝ ∧ (𝑋 + 2) ≤ ((2 · 𝑋) + 3)) → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
9189, 90syl 17 1 (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  3c3 12320  +crp 13032  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-3 12328  df-rp 13033  df-ico 13390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator