MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass Structured version   Visualization version   GIF version

Theorem xaddass 13291
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 13292, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass
StepHypRef Expression
1 recn 11245 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 11245 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 11245 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 addass 11242 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
51, 2, 3, 4syl3an 1161 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
653expa 1119 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
7 readdcl 11238 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
8 rexadd 13274 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
97, 8sylan 580 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
10 readdcl 11238 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
11 rexadd 13274 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1210, 11sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1312anassrs 467 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
146, 9, 133eqtr4d 2787 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 + 𝐶)))
15 rexadd 13274 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1615adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1716oveq1d 7446 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) +𝑒 𝐶))
18 rexadd 13274 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
1918adantll 714 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2019oveq2d 7447 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 (𝐵 + 𝐶)))
2114, 17, 203eqtr4d 2787 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
2221adantll 714 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
23 oveq2 7439 . . . . . . . . 9 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 +𝑒 𝐵) +𝑒 +∞))
24 simp1l 1198 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐴 ∈ ℝ*)
25 simp2l 1200 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐵 ∈ ℝ*)
26 xaddcl 13281 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2724, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
28 xaddnemnf 13278 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
29283adant3 1133 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
30 xaddpnf1 13268 . . . . . . . . . 10 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐴 +𝑒 𝐵) ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3127, 29, 30syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3223, 31sylan9eqr 2799 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = +∞)
33 xaddpnf1 13268 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
34333ad2ant1 1134 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 +∞) = +∞)
3534adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 +∞) = +∞)
3632, 35eqtr4d 2780 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 +∞))
37 oveq2 7439 . . . . . . . . 9 (𝐶 = +∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
38 xaddpnf1 13268 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
39383ad2ant2 1135 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 +∞) = +∞)
4037, 39sylan9eqr 2799 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
4140oveq2d 7447 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
4236, 41eqtr4d 2780 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4342adantlr 715 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
44 simp3 1139 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
45 xrnemnf 13159 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4644, 45sylib 218 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4746adantr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4822, 43, 47mpjaodan 961 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4948anassrs 467 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
50 xaddpnf2 13269 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
51503ad2ant3 1136 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = +∞)
5251, 34eqtr4d 2780 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
5352adantr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
54 oveq2 7439 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
5554, 34sylan9eqr 2799 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
5655oveq1d 7446 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
57 oveq1 7438 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
5857, 51sylan9eqr 2799 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
5958oveq2d 7447 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
6053, 56, 593eqtr4d 2787 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
6160adantlr 715 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
62 simpl2 1193 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
63 xrnemnf 13159 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6462, 63sylib 218 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6549, 61, 64mpjaodan 961 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
66 simpl3 1194 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
6766, 50syl 17 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = +∞)
68 simpl2l 1227 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
69 simpl3l 1229 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
70 xaddcl 13281 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
7168, 69, 70syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
72 simpl2 1193 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
73 xaddnemnf 13278 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 𝐶) ≠ -∞)
7472, 66, 73syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≠ -∞)
75 xaddpnf2 13269 . . . . 5 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7671, 74, 75syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7767, 76eqtr4d 2780 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
78 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
7978oveq1d 7446 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
80 xaddpnf2 13269 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
8172, 80syl 17 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐵) = +∞)
8279, 81eqtrd 2777 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
8382oveq1d 7446 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
8478oveq1d 7446 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
8577, 83, 843eqtr4d 2787 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
86 simp1 1137 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
87 xrnemnf 13159 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8886, 87sylib 218 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8965, 85, 88mpjaodan 961 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cc 11153  cr 11154   + caddc 11158  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-addass 11220  ax-i2m1 11223  ax-rnegex 11226  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-xadd 13155
This theorem is referenced by:  xaddass2  13292  xpncan  13293  xadd4d  13345  xrs1mnd  21422  xlt2addrd  32762  xrge0addass  33021  xrge0npcan  33025  carsgclctunlem2  34321  caragenuncllem  46527
  Copyright terms: Public domain W3C validator