MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass Structured version   Visualization version   GIF version

Theorem xaddass 12726
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 12727, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass
StepHypRef Expression
1 recn 10706 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 10706 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 10706 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 addass 10703 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
51, 2, 3, 4syl3an 1161 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
653expa 1119 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
7 readdcl 10699 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
8 rexadd 12709 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
97, 8sylan 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) + 𝐶))
10 readdcl 10699 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
11 rexadd 12709 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1210, 11sylan2 596 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
1312anassrs 471 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 + 𝐶)) = (𝐴 + (𝐵 + 𝐶)))
146, 9, 133eqtr4d 2783 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 + 𝐶)))
15 rexadd 12709 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1615adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1716oveq1d 7186 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 + 𝐵) +𝑒 𝐶))
18 rexadd 12709 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
1918adantll 714 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2019oveq2d 7187 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 (𝐵 + 𝐶)))
2114, 17, 203eqtr4d 2783 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
2221adantll 714 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
23 oveq2 7179 . . . . . . . . 9 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = ((𝐴 +𝑒 𝐵) +𝑒 +∞))
24 simp1l 1198 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐴 ∈ ℝ*)
25 simp2l 1200 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → 𝐵 ∈ ℝ*)
26 xaddcl 12716 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
2724, 25, 26syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
28 xaddnemnf 12713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
29283adant3 1133 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
30 xaddpnf1 12703 . . . . . . . . . 10 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐴 +𝑒 𝐵) ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3127, 29, 30syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 +∞) = +∞)
3223, 31sylan9eqr 2795 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = +∞)
33 xaddpnf1 12703 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
34333ad2ant1 1134 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 +𝑒 +∞) = +∞)
3534adantr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 +∞) = +∞)
3632, 35eqtr4d 2776 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 +∞))
37 oveq2 7179 . . . . . . . . 9 (𝐶 = +∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
38 xaddpnf1 12703 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
39383ad2ant2 1135 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 +∞) = +∞)
4037, 39sylan9eqr 2795 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
4140oveq2d 7187 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
4236, 41eqtr4d 2776 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4342adantlr 715 . . . . 5 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
44 simp3 1139 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
45 xrnemnf 12596 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4644, 45sylib 221 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4746adantr 484 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞))
4822, 43, 47mpjaodan 958 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
4948anassrs 471 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
50 xaddpnf2 12704 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
51503ad2ant3 1136 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = +∞)
5251, 34eqtr4d 2776 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
5352adantr 484 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = (𝐴 +𝑒 +∞))
54 oveq2 7179 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
5554, 34sylan9eqr 2795 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
5655oveq1d 7186 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
57 oveq1 7178 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
5857, 51sylan9eqr 2795 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
5958oveq2d 7187 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (𝐴 +𝑒 +∞))
6053, 56, 593eqtr4d 2783 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
6160adantlr 715 . . 3 (((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
62 simpl2 1193 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
63 xrnemnf 12596 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6462, 63sylib 221 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
6549, 61, 64mpjaodan 958 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
66 simpl3 1194 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
6766, 50syl 17 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = +∞)
68 simpl2l 1227 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
69 simpl3l 1229 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
70 xaddcl 12716 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
7168, 69, 70syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
72 simpl2 1193 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
73 xaddnemnf 12713 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐵 +𝑒 𝐶) ≠ -∞)
7472, 66, 73syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≠ -∞)
75 xaddpnf2 12704 . . . . 5 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7671, 74, 75syl2anc 587 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 (𝐵 +𝑒 𝐶)) = +∞)
7767, 76eqtr4d 2776 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
78 simpr 488 . . . . . 6 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
7978oveq1d 7186 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
80 xaddpnf2 12704 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
8172, 80syl 17 . . . . 5 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐵) = +∞)
8279, 81eqtrd 2773 . . . 4 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
8382oveq1d 7186 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (+∞ +𝑒 𝐶))
8478oveq1d 7186 . . 3 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (+∞ +𝑒 (𝐵 +𝑒 𝐶)))
8577, 83, 843eqtr4d 2783 . 2 ((((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
86 simp1 1137 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
87 xrnemnf 12596 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8886, 87sylib 221 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
8965, 85, 88mpjaodan 958 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2113  wne 2934  (class class class)co 7171  cc 10614  cr 10615   + caddc 10619  +∞cpnf 10751  -∞cmnf 10752  *cxr 10753   +𝑒 cxad 12589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-addass 10681  ax-i2m1 10684  ax-rnegex 10687  ax-cnre 10689
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7174  df-oprab 7175  df-mpo 7176  df-1st 7715  df-2nd 7716  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-xadd 12592
This theorem is referenced by:  xaddass2  12727  xpncan  12728  xadd4d  12780  xrs1mnd  20256  xlt2addrd  30656  xrge0addass  30876  xrge0npcan  30880  carsgclctunlem2  31856  caragenuncllem  43584
  Copyright terms: Public domain W3C validator