| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clim2ser2 | Structured version Visualization version GIF version | ||
| Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| Ref | Expression |
|---|---|
| clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim2ser.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| clim2ser.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| clim2ser2.5 | ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) |
| Ref | Expression |
|---|---|
| clim2ser2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
| 2 | clim2ser.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 3 | clim2ser.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | peano2uz 12874 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| 7 | eluzelz 12819 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 9 | clim2ser2.5 | . 2 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) | |
| 10 | eluzel2 12814 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 12 | clim2ser.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 13 | 3, 11, 12 | serf 14005 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 14 | 13, 2 | ffvelcdmd 7064 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 15 | seqex 13978 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
| 17 | 6, 3 | eleqtrrdi 2840 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
| 18 | 3 | uztrn2 12828 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 19 | 17, 18 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 20 | 19, 12 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
| 21 | 1, 8, 20 | serf 14005 | . . 3 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
| 22 | 21 | ffvelcdmda 7063 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ) |
| 23 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 24 | addcl 11168 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
| 25 | 24 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
| 26 | addass 11173 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) | |
| 27 | 26 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) |
| 28 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) | |
| 29 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 30 | elfzuz 13494 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 31 | 30, 3 | eleqtrrdi 2840 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
| 32 | 31, 12 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
| 33 | 32 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
| 34 | 25, 27, 28, 29, 33 | seqsplit 14010 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗))) |
| 35 | 23, 22, 34 | comraddd 11406 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁))) |
| 36 | 1, 8, 9, 14, 16, 22, 35 | climaddc1 15608 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 1c1 11087 + caddc 11089 ℤcz 12545 ℤ≥cuz 12809 ...cfz 13481 seqcseq 13976 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 |
| This theorem is referenced by: iserex 15630 abelthlem6 26353 abelthlem9 26357 leibpi 26859 |
| Copyright terms: Public domain | W3C validator |