MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgadd Structured version   Visualization version   GIF version

Theorem hashgadd 14400
Description: 𝐺 maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
hashgadd.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
hashgadd ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))

Proof of Theorem hashgadd
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . 6 (𝑛 = ∅ → (𝐴 +o 𝑛) = (𝐴 +o ∅))
21fveq2d 6885 . . . . 5 (𝑛 = ∅ → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o ∅)))
3 fveq2 6881 . . . . . 6 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
43oveq2d 7426 . . . . 5 (𝑛 = ∅ → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘∅)))
52, 4eqeq12d 2752 . . . 4 (𝑛 = ∅ → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅))))
65imbi2d 340 . . 3 (𝑛 = ∅ → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))))
7 oveq2 7418 . . . . . 6 (𝑛 = 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o 𝑧))
87fveq2d 6885 . . . . 5 (𝑛 = 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝑧)))
9 fveq2 6881 . . . . . 6 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
109oveq2d 7426 . . . . 5 (𝑛 = 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝑧)))
118, 10eqeq12d 2752 . . . 4 (𝑛 = 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))))
1211imbi2d 340 . . 3 (𝑛 = 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)))))
13 oveq2 7418 . . . . . 6 (𝑛 = suc 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o suc 𝑧))
1413fveq2d 6885 . . . . 5 (𝑛 = suc 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o suc 𝑧)))
15 fveq2 6881 . . . . . 6 (𝑛 = suc 𝑧 → (𝐺𝑛) = (𝐺‘suc 𝑧))
1615oveq2d 7426 . . . . 5 (𝑛 = suc 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
1714, 16eqeq12d 2752 . . . 4 (𝑛 = suc 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
1817imbi2d 340 . . 3 (𝑛 = suc 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
19 oveq2 7418 . . . . . 6 (𝑛 = 𝐵 → (𝐴 +o 𝑛) = (𝐴 +o 𝐵))
2019fveq2d 6885 . . . . 5 (𝑛 = 𝐵 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝐵)))
21 fveq2 6881 . . . . . 6 (𝑛 = 𝐵 → (𝐺𝑛) = (𝐺𝐵))
2221oveq2d 7426 . . . . 5 (𝑛 = 𝐵 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝐵)))
2320, 22eqeq12d 2752 . . . 4 (𝑛 = 𝐵 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
2423imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))))
25 hashgadd.1 . . . . . . . . 9 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2625hashgf1o 13994 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ0
27 f1of 6823 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
2826, 27ax-mp 5 . . . . . . 7 𝐺:ω⟶ℕ0
2928ffvelcdmi 7078 . . . . . 6 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℕ0)
3029nn0cnd 12569 . . . . 5 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℂ)
3130addridd 11440 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + 0) = (𝐺𝐴))
32 0z 12604 . . . . . . 7 0 ∈ ℤ
3332, 25om2uz0i 13970 . . . . . 6 (𝐺‘∅) = 0
3433oveq2i 7421 . . . . 5 ((𝐺𝐴) + (𝐺‘∅)) = ((𝐺𝐴) + 0)
3534a1i 11 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + (𝐺‘∅)) = ((𝐺𝐴) + 0))
36 nna0 8621 . . . . 5 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
3736fveq2d 6885 . . . 4 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = (𝐺𝐴))
3831, 35, 373eqtr4rd 2782 . . 3 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))
39 nnasuc 8623 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
4039fveq2d 6885 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = (𝐺‘suc (𝐴 +o 𝑧)))
41 nnacl 8628 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o 𝑧) ∈ ω)
4232, 25om2uzsuci 13971 . . . . . . . . . 10 ((𝐴 +o 𝑧) ∈ ω → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4341, 42syl 17 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4440, 43eqtrd 2771 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
45443adant3 1132 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4628ffvelcdmi 7078 . . . . . . . . . . 11 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℕ0)
4746nn0cnd 12569 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℂ)
48 ax-1cn 11192 . . . . . . . . . . 11 1 ∈ ℂ
49 addass 11221 . . . . . . . . . . 11 (((𝐺𝐴) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5048, 49mp3an3 1452 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5130, 47, 50syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
52513adant3 1132 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
53 oveq1 7417 . . . . . . . . 9 ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
54533ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
5532, 25om2uzsuci 13971 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
5655oveq2d 7426 . . . . . . . . 9 (𝑧 ∈ ω → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
57563ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5852, 54, 573eqtr4d 2781 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
5945, 58eqtrd 2771 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
60593expia 1121 . . . . 5 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
6160expcom 413 . . . 4 (𝑧 ∈ ω → (𝐴 ∈ ω → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
6261a2d 29 . . 3 (𝑧 ∈ ω → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
636, 12, 18, 24, 38, 62finds 7897 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
6463impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cmpt 5206  cres 5661  suc csuc 6359  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  ωcom 7866  reccrdg 8428   +o coa 8482  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  hashdom  14402  hashun  14405
  Copyright terms: Public domain W3C validator