Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = ∅ → (𝐴 +o 𝑛) = (𝐴 +o ∅)) |
2 | 1 | fveq2d 6760 |
. . . . 5
⊢ (𝑛 = ∅ → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o ∅))) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = ∅ → (𝐺‘𝑛) = (𝐺‘∅)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = ∅ → ((𝐺‘𝐴) + (𝐺‘𝑛)) = ((𝐺‘𝐴) + (𝐺‘∅))) |
5 | 2, 4 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = ∅ → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛)) ↔ (𝐺‘(𝐴 +o ∅)) = ((𝐺‘𝐴) + (𝐺‘∅)))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑛 = ∅ → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺‘𝐴) + (𝐺‘∅))))) |
7 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o 𝑧)) |
8 | 7 | fveq2d 6760 |
. . . . 5
⊢ (𝑛 = 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝑧))) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = 𝑧 → (𝐺‘𝑛) = (𝐺‘𝑧)) |
10 | 9 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 𝑧 → ((𝐺‘𝐴) + (𝐺‘𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) |
11 | 8, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛)) ↔ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))))) |
13 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = suc 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o suc 𝑧)) |
14 | 13 | fveq2d 6760 |
. . . . 5
⊢ (𝑛 = suc 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o suc 𝑧))) |
15 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = suc 𝑧 → (𝐺‘𝑛) = (𝐺‘suc 𝑧)) |
16 | 15 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = suc 𝑧 → ((𝐺‘𝐴) + (𝐺‘𝑛)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))) |
17 | 14, 16 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = suc 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛)) ↔ (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧)))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑛 = suc 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))))) |
19 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = 𝐵 → (𝐴 +o 𝑛) = (𝐴 +o 𝐵)) |
20 | 19 | fveq2d 6760 |
. . . . 5
⊢ (𝑛 = 𝐵 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝐵))) |
21 | | fveq2 6756 |
. . . . . 6
⊢ (𝑛 = 𝐵 → (𝐺‘𝑛) = (𝐺‘𝐵)) |
22 | 21 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 𝐵 → ((𝐺‘𝐴) + (𝐺‘𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) |
23 | 20, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑛 = 𝐵 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛)) ↔ (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵)))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝐵 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺‘𝐴) + (𝐺‘𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))))) |
25 | | hashgadd.1 |
. . . . . . . . 9
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
26 | 25 | hashgf1o 13619 |
. . . . . . . 8
⊢ 𝐺:ω–1-1-onto→ℕ0 |
27 | | f1of 6700 |
. . . . . . . 8
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ 𝐺:ω⟶ℕ0 |
29 | 28 | ffvelrni 6942 |
. . . . . 6
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈
ℕ0) |
30 | 29 | nn0cnd 12225 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℂ) |
31 | 30 | addid1d 11105 |
. . . 4
⊢ (𝐴 ∈ ω → ((𝐺‘𝐴) + 0) = (𝐺‘𝐴)) |
32 | | 0z 12260 |
. . . . . . 7
⊢ 0 ∈
ℤ |
33 | 32, 25 | om2uz0i 13595 |
. . . . . 6
⊢ (𝐺‘∅) =
0 |
34 | 33 | oveq2i 7266 |
. . . . 5
⊢ ((𝐺‘𝐴) + (𝐺‘∅)) = ((𝐺‘𝐴) + 0) |
35 | 34 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ω → ((𝐺‘𝐴) + (𝐺‘∅)) = ((𝐺‘𝐴) + 0)) |
36 | | nna0 8397 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
37 | 36 | fveq2d 6760 |
. . . 4
⊢ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = (𝐺‘𝐴)) |
38 | 31, 35, 37 | 3eqtr4rd 2789 |
. . 3
⊢ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺‘𝐴) + (𝐺‘∅))) |
39 | | nnasuc 8399 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧)) |
40 | 39 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = (𝐺‘suc (𝐴 +o 𝑧))) |
41 | | nnacl 8404 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o 𝑧) ∈
ω) |
42 | 32, 25 | om2uzsuci 13596 |
. . . . . . . . . 10
⊢ ((𝐴 +o 𝑧) ∈ ω → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1)) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1)) |
44 | 40, 43 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1)) |
45 | 44 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1)) |
46 | 28 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈
ℕ0) |
47 | 46 | nn0cnd 12225 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℂ) |
48 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
49 | | addass 10889 |
. . . . . . . . . . 11
⊢ (((𝐺‘𝐴) ∈ ℂ ∧ (𝐺‘𝑧) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
50 | 48, 49 | mp3an3 1448 |
. . . . . . . . . 10
⊢ (((𝐺‘𝐴) ∈ ℂ ∧ (𝐺‘𝑧) ∈ ℂ) → (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
51 | 30, 47, 50 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
52 | 51 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
53 | | oveq1 7262 |
. . . . . . . . 9
⊢ ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧)) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1)) |
54 | 53 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺‘𝐴) + (𝐺‘𝑧)) + 1)) |
55 | 32, 25 | om2uzsuci 13596 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
56 | 55 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑧 ∈ ω → ((𝐺‘𝐴) + (𝐺‘suc 𝑧)) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
57 | 56 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → ((𝐺‘𝐴) + (𝐺‘suc 𝑧)) = ((𝐺‘𝐴) + ((𝐺‘𝑧) + 1))) |
58 | 52, 54, 57 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))) |
59 | 45, 58 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))) |
60 | 59 | 3expia 1119 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧)))) |
61 | 60 | expcom 413 |
. . . 4
⊢ (𝑧 ∈ ω → (𝐴 ∈ ω → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))))) |
62 | 61 | a2d 29 |
. . 3
⊢ (𝑧 ∈ ω → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺‘𝐴) + (𝐺‘𝑧))) → (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘𝐴) + (𝐺‘suc 𝑧))))) |
63 | 6, 12, 18, 24, 38, 62 | finds 7719 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵)))) |
64 | 63 | impcom 407 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) |