MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptolemy Structured version   Visualization version   GIF version

Theorem ptolemy 26539
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 16209, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 11238 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
213ad2ant2 1134 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 + 𝐷) ∈ ℂ)
32coscld 16168 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) ∈ ℂ)
43negnegd 11612 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = (cos‘(𝐶 + 𝐷)))
5 addlid 11445 . . . . . . . . . . . . . . 15 ((𝐶 + 𝐷) ∈ ℂ → (0 + (𝐶 + 𝐷)) = (𝐶 + 𝐷))
65oveq1d 7447 . . . . . . . . . . . . . 14 ((𝐶 + 𝐷) ∈ ℂ → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
72, 6syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
8 0cnd 11255 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → 0 ∈ ℂ)
9 addcl 11238 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
109adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ)
11103adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 + 𝐵) ∈ ℂ)
128, 11, 2pnpcan2d 11659 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = (0 − (𝐴 + 𝐵)))
13 simp3 1138 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π)
1413oveq2d 7448 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − π))
157, 12, 143eqtr3rd 2785 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = (0 − (𝐴 + 𝐵)))
16 df-neg 11496 . . . . . . . . . . . 12 -(𝐴 + 𝐵) = (0 − (𝐴 + 𝐵))
1715, 16eqtr4di 2794 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = -(𝐴 + 𝐵))
1817fveq2d 6909 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = (cos‘-(𝐴 + 𝐵)))
19 cosmpi 26531 . . . . . . . . . . 11 ((𝐶 + 𝐷) ∈ ℂ → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
202, 19syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
21 cosneg 16184 . . . . . . . . . . 11 ((𝐴 + 𝐵) ∈ ℂ → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2211, 21syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2318, 20, 223eqtr3d 2784 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → -(cos‘(𝐶 + 𝐷)) = (cos‘(𝐴 + 𝐵)))
2423negeqd 11503 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
254, 24eqtr3d 2778 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
2625oveq2d 7448 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))))
27 subcl 11508 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
2827adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶𝐷) ∈ ℂ)
2928coscld 16168 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐶𝐷)) ∈ ℂ)
30293adant3 1132 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶𝐷)) ∈ ℂ)
3111coscld 16168 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴 + 𝐵)) ∈ ℂ)
3230, 31subnegd 11628 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3326, 32eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3433oveq1d 7447 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2) = (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2))
3534oveq2d 7448 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
36 subcl 11508 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
37363ad2ant1 1133 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴𝐵) ∈ ℂ)
3837coscld 16168 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) ∈ ℂ)
3938, 31subcld 11621 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ)
4030, 31addcld 11281 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ)
41 2cnne0 12477 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
4241a1i 11 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (2 ∈ ℂ ∧ 2 ≠ 0))
43 divdir 11948 . . . . 5 ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4439, 40, 42, 43syl3anc 1372 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4538, 31, 30nppcan3d 11648 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) = ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))))
4645oveq1d 7447 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
4744, 46eqtr3d 2778 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
4835, 47eqtrd 2776 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
49 sinmul 16209 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
50493ad2ant1 1133 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
51 sinmul 16209 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
52513ad2ant2 1134 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
5350, 52oveq12d 7450 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)))
54 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
55 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
56 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
5754, 55, 56pnpcan2d 11659 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 + 𝐶) − (𝐴 + 𝐶)) = (𝐵𝐴))
5857fveq2d 6909 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
59583adant3 1132 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
601adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ)
6110, 60, 283jca 1128 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
62613adant3 1132 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
63 addass 11243 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
6462, 63syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
65 oveq1 7439 . . . . . . . . . . 11 (((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
66653ad2ant3 1135 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
67 simpl 482 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐶 ∈ ℂ)
68 simpr 484 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐷 ∈ ℂ)
6967, 68, 673jca 1128 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
70693ad2ant2 1134 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
71 ppncan 11552 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐷) + (𝐶𝐷)) = (𝐶 + 𝐶))
7271oveq2d 7448 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
7370, 72syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
74 simp1 1136 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
7567, 67jca 511 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
76753ad2ant2 1134 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
77 add4 11483 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
7874, 76, 77syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
79 addcl 11238 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ)
8079ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐶) ∈ ℂ)
81 addcl 11238 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ)
8281ad2ant2lr 748 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
8380, 82jca 511 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
84833adant3 1132 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
85 addcom 11448 . . . . . . . . . . . 12 (((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8684, 85syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8773, 78, 863eqtrd 2780 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8864, 66, 873eqtr3rd 2785 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = (π + (𝐶𝐷)))
89 picn 26502 . . . . . . . . . . 11 π ∈ ℂ
90 addcom 11448 . . . . . . . . . . 11 ((π ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9189, 28, 90sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
92913adant3 1132 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9388, 92eqtrd 2776 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = ((𝐶𝐷) + π))
9493fveq2d 6909 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = (cos‘((𝐶𝐷) + π)))
95 cosppi 26533 . . . . . . . . 9 ((𝐶𝐷) ∈ ℂ → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
9628, 95syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
97963adant3 1132 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
9894, 97eqtrd 2776 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = -(cos‘(𝐶𝐷)))
9959, 98oveq12d 7450 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))))
100 subcl 11508 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
101100ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
102101adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
103102coscld 16168 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐵𝐴)) ∈ ℂ)
104103, 29subnegd 11628 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
1051043adant3 1132 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
10699, 105eqtrd 2776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
107106oveq1d 7447 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
108 sinmul 16209 . . . . 5 (((𝐵 + 𝐶) ∈ ℂ ∧ (𝐴 + 𝐶) ∈ ℂ) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
10982, 80, 108syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
1101093adant3 1132 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
111 cosneg 16184 . . . . . . . 8 ((𝐴𝐵) ∈ ℂ → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
11236, 111syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
113 negsubdi2 11569 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
114113fveq2d 6909 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐵𝐴)))
115112, 114eqtr3d 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
1161153ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
117116oveq1d 7447 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
118117oveq1d 7447 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
119107, 110, 1183eqtr4d 2786 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
12048, 53, 1193eqtr4d 2786 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  sincsin 16100  cosccos 16101  πcpi 16103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator