MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addlid Structured version   Visualization version   GIF version

Theorem addlid 11428
Description: 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addlid (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem addlid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnegex 11426 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
2 cnegex 11426 . . . 4 (𝑥 ∈ ℂ → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
32ad2antrl 727 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
4 0cn 11237 . . . . . . . . . 10 0 ∈ ℂ
5 addass 11226 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
64, 4, 5mp3an12 1448 . . . . . . . . 9 (𝑦 ∈ ℂ → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
76adantr 480 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
873ad2ant3 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
9 00id 11420 . . . . . . . . 9 (0 + 0) = 0
109oveq1i 7430 . . . . . . . 8 ((0 + 0) + 𝑦) = (0 + 𝑦)
11 simp1 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝐴 ∈ ℂ)
12 simp2l 1197 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑥 ∈ ℂ)
13 simp3l 1199 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑦 ∈ ℂ)
1411, 12, 13addassd 11267 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (𝐴 + (𝑥 + 𝑦)))
15 simp2r 1198 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 𝑥) = 0)
1615oveq1d 7435 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (0 + 𝑦))
17 simp3r 1200 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝑥 + 𝑦) = 0)
1817oveq2d 7436 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + (𝑥 + 𝑦)) = (𝐴 + 0))
1914, 16, 183eqtr3rd 2777 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = (0 + 𝑦))
20 addrid 11425 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
21203ad2ant1 1131 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = 𝐴)
2219, 21eqtr3d 2770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝑦) = 𝐴)
2310, 22eqtrid 2780 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = 𝐴)
2422oveq2d 7436 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + (0 + 𝑦)) = (0 + 𝐴))
258, 23, 243eqtr3rd 2777 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝐴) = 𝐴)
26253expia 1119 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → (0 + 𝐴) = 𝐴))
2726expd 415 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (𝑦 ∈ ℂ → ((𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴)))
2827rexlimdv 3150 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴))
293, 28mpd 15 . 2 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (0 + 𝐴) = 𝐴)
301, 29rexlimddv 3158 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3067  (class class class)co 7420  cc 11137  0cc0 11139   + caddc 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284
This theorem is referenced by:  addcan  11429  addlidi  11433  addlidd  11446  negneg  11541  fz0to4untppr  13637  fzo0addel  13719  fzoaddel2  13721  divfl0  13822  modid  13894  modsumfzodifsn  13942  swrdspsleq  14648  swrds1  14649  isercolllem3  15646  sumrblem  15690  summolem2a  15694  fsum0diag2  15762  eftlub  16086  gcdid  16502  cnaddablx  19823  cnaddabl  19824  cnaddid  19825  cncrng  21316  cncrngOLD  21317  cnlmod  25080  ptolemy  26444  logtayl  26607  leibpilem2  26886  axcontlem2  28789  cnaddabloOLD  30404  cnidOLD  30405  dvcosax  45314  2zrngamnd  47309  aacllem  48234
  Copyright terms: Public domain W3C validator