MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addlid Structured version   Visualization version   GIF version

Theorem addlid 11363
Description: 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addlid (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem addlid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnegex 11361 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
2 cnegex 11361 . . . 4 (𝑥 ∈ ℂ → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
32ad2antrl 728 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
4 0cn 11172 . . . . . . . . . 10 0 ∈ ℂ
5 addass 11161 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
64, 4, 5mp3an12 1453 . . . . . . . . 9 (𝑦 ∈ ℂ → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
76adantr 480 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
873ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
9 00id 11355 . . . . . . . . 9 (0 + 0) = 0
109oveq1i 7399 . . . . . . . 8 ((0 + 0) + 𝑦) = (0 + 𝑦)
11 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝐴 ∈ ℂ)
12 simp2l 1200 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑥 ∈ ℂ)
13 simp3l 1202 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑦 ∈ ℂ)
1411, 12, 13addassd 11202 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (𝐴 + (𝑥 + 𝑦)))
15 simp2r 1201 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 𝑥) = 0)
1615oveq1d 7404 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (0 + 𝑦))
17 simp3r 1203 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝑥 + 𝑦) = 0)
1817oveq2d 7405 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + (𝑥 + 𝑦)) = (𝐴 + 0))
1914, 16, 183eqtr3rd 2774 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = (0 + 𝑦))
20 addrid 11360 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
21203ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = 𝐴)
2219, 21eqtr3d 2767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝑦) = 𝐴)
2310, 22eqtrid 2777 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = 𝐴)
2422oveq2d 7405 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + (0 + 𝑦)) = (0 + 𝐴))
258, 23, 243eqtr3rd 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝐴) = 𝐴)
26253expia 1121 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → (0 + 𝐴) = 𝐴))
2726expd 415 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (𝑦 ∈ ℂ → ((𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴)))
2827rexlimdv 3133 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴))
293, 28mpd 15 . 2 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (0 + 𝐴) = 𝐴)
301, 29rexlimddv 3141 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  (class class class)co 7389  cc 11072  0cc0 11074   + caddc 11077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219
This theorem is referenced by:  addcan  11364  addlidi  11368  addlidd  11381  negneg  11478  fzo0addel  13685  fzoaddel2  13687  divfl0  13792  modid  13864  modsumfzodifsn  13915  swrdspsleq  14636  swrds1  14637  isercolllem3  15639  sumrblem  15683  summolem2a  15687  fsum0diag2  15755  eftlub  16083  gcdid  16503  cnaddablx  19804  cnaddabl  19805  cnaddid  19806  cncrng  21306  cncrngOLD  21307  cnlmod  25046  ptolemy  26411  logtayl  26575  leibpilem2  26857  axcontlem2  28898  cnaddabloOLD  30516  cnidOLD  30517  gsumzrsum  33005  dvcosax  45917  2zrngamnd  48225  aacllem  49780
  Copyright terms: Public domain W3C validator