MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2ser Structured version   Visualization version   GIF version

Theorem clim2ser 15566
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2ser (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2ser
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2843 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 12803 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 12750 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 17 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
10 eluzel2 12745 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12serf 13941 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1413, 2ffvelcdmd 7026 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 13914 . . 3 seq(𝑁 + 1)( + , 𝐹) ∈ V
1615a1i 11 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ∈ V)
1713adantr 480 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ)
186, 3eleqtrrdi 2844 . . . 4 (𝜑 → (𝑁 + 1) ∈ 𝑍)
193uztrn2 12759 . . . 4 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2018, 19sylan 580 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2117, 20ffvelcdmd 7026 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
22 addcl 11097 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2322adantl 481 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
24 addass 11102 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2524adantl 481 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
26 simpr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
274adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
28 elfzuz 13424 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
2928, 3eleqtrrdi 2844 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3029, 12sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3130adantlr 715 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3223, 25, 26, 27, 31seqsplit 13946 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)))
3332oveq1d 7369 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁)) = (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁)))
3414adantr 480 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
353uztrn2 12759 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3618, 35sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3736, 12syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
381, 8, 37serf 13941 . . . . 5 (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
3938ffvelcdmda 7025 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ)
4034, 39pncan2d 11483 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( + , 𝐹)‘𝑗))
4133, 40eqtr2d 2769 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁)))
421, 8, 9, 14, 16, 21, 41climsubc1 15549 1 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5095  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  1c1 11016   + caddc 11018  cmin 11353  cz 12477  cuz 12740  ...cfz 13411  seqcseq 13912  cli 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399
This theorem is referenced by:  iserex  15568  ege2le3  16001  abelthlem9  26380  stirlinglem7  46205  stirlinglem11  46209  stirlinglem12  46210
  Copyright terms: Public domain W3C validator