MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2ser Structured version   Visualization version   GIF version

Theorem clim2ser 15364
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2ser (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2ser
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2851 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 12640 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 12591 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 17 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
10 eluzel2 12586 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12serf 13749 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1413, 2ffvelrnd 6959 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 13721 . . 3 seq(𝑁 + 1)( + , 𝐹) ∈ V
1615a1i 11 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ∈ V)
1713adantr 481 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ)
186, 3eleqtrrdi 2852 . . . 4 (𝜑 → (𝑁 + 1) ∈ 𝑍)
193uztrn2 12600 . . . 4 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2018, 19sylan 580 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2117, 20ffvelrnd 6959 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
22 addcl 10954 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2322adantl 482 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
24 addass 10959 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2524adantl 482 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
26 simpr 485 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
274adantr 481 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
28 elfzuz 13251 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
2928, 3eleqtrrdi 2852 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3029, 12sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3130adantlr 712 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3223, 25, 26, 27, 31seqsplit 13754 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)))
3332oveq1d 7286 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁)) = (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁)))
3414adantr 481 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
353uztrn2 12600 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3618, 35sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3736, 12syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
381, 8, 37serf 13749 . . . . 5 (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
3938ffvelrnda 6958 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ)
4034, 39pncan2d 11334 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( + , 𝐹)‘𝑗))
4133, 40eqtr2d 2781 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁)))
421, 8, 9, 14, 16, 21, 41climsubc1 15345 1 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  1c1 10873   + caddc 10875  cmin 11205  cz 12319  cuz 12581  ...cfz 13238  seqcseq 13719  cli 15191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195
This theorem is referenced by:  iserex  15366  ege2le3  15797  abelthlem9  25597  stirlinglem7  43592  stirlinglem11  43596  stirlinglem12  43597
  Copyright terms: Public domain W3C validator