Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  add4 Structured version   Visualization version   GIF version

 Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
add4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

StepHypRef Expression
1 add12 10860 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷)))
213expb 1116 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷)))
32oveq2d 7175 . . 3 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
43adantll 712 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
5 addcl 10622 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
6 addass 10627 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
763expa 1114 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
85, 7sylan2 594 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
9 addcl 10622 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + 𝐷) ∈ ℂ)
10 addass 10627 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
11103expa 1114 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
129, 11sylan2 594 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
1312an4s 658 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
144, 8, 133eqtr4d 2869 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1536   ∈ wcel 2113  (class class class)co 7159  ℂcc 10538   + caddc 10543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683 This theorem is referenced by:  add42  10864  add4i  10867  add4d  10871  3dvds2dec  15685  opoe  15715  ptolemy  25085
 Copyright terms: Public domain W3C validator