![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > add4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
add4 | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add12 11380 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷))) | |
2 | 1 | 3expb 1121 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷))) |
3 | 2 | oveq2d 7377 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
4 | 3 | adantll 713 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
5 | addcl 11141 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ) | |
6 | addass 11146 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) | |
7 | 6 | 3expa 1119 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
8 | 5, 7 | sylan2 594 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
9 | addcl 11141 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + 𝐷) ∈ ℂ) | |
10 | addass 11146 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) | |
11 | 10 | 3expa 1119 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
12 | 9, 11 | sylan2 594 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
13 | 12 | an4s 659 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
14 | 4, 8, 13 | 3eqtr4d 2783 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7361 ℂcc 11057 + caddc 11062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-ltxr 11202 |
This theorem is referenced by: add42 11384 add4i 11387 add4d 11391 3dvds2dec 16223 opoe 16253 ptolemy 25876 |
Copyright terms: Public domain | W3C validator |