![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > add4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
add4 | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add12 11429 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷))) | |
2 | 1 | 3expb 1117 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷))) |
3 | 2 | oveq2d 7418 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
4 | 3 | adantll 711 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
5 | addcl 11189 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ) | |
6 | addass 11194 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) | |
7 | 6 | 3expa 1115 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
8 | 5, 7 | sylan2 592 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
9 | addcl 11189 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + 𝐷) ∈ ℂ) | |
10 | addass 11194 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) | |
11 | 10 | 3expa 1115 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
12 | 9, 11 | sylan2 592 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
13 | 12 | an4s 657 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷)))) |
14 | 4, 8, 13 | 3eqtr4d 2774 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 (class class class)co 7402 ℂcc 11105 + caddc 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-ltxr 11251 |
This theorem is referenced by: add42 11433 add4i 11436 add4d 11440 3dvds2dec 16275 opoe 16305 ptolemy 26350 |
Copyright terms: Public domain | W3C validator |