Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fztp | Structured version Visualization version GIF version |
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fztp | ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 12332 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
2 | peano2uz 12376 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
3 | fzsuc 13038 | . . 3 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) |
5 | zcn 12060 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
6 | ax-1cn 10666 | . . . . . 6 ⊢ 1 ∈ ℂ | |
7 | addass 10695 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) | |
8 | 6, 6, 7 | mp3an23 1454 | . . . . 5 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
10 | df-2 11772 | . . . . 5 ⊢ 2 = (1 + 1) | |
11 | 10 | oveq2i 7175 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
12 | 9, 11 | eqtr4di 2791 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
13 | 12 | oveq2d 7180 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2))) |
14 | fzpr 13046 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
15 | 12 | sneqd 4525 | . . . 4 ⊢ (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)}) |
16 | 14, 15 | uneq12d 4052 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})) |
17 | df-tp 4518 | . . 3 ⊢ {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}) | |
18 | 16, 17 | eqtr4di 2791 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
19 | 4, 13, 18 | 3eqtr3d 2781 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ∪ cun 3839 {csn 4513 {cpr 4515 {ctp 4517 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 1c1 10609 + caddc 10611 2c2 11764 ℤcz 12055 ℤ≥cuz 12317 ...cfz 12974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-n0 11970 df-z 12056 df-uz 12318 df-fz 12975 |
This theorem is referenced by: fztpval 13053 fz0tp 13092 fz0to4untppr 13094 fzo0to3tp 13207 fzo1to4tp 13209 1cubr 25572 rabren3dioph 40193 nnsum4primesodd 44766 nnsum4primesoddALTV 44767 |
Copyright terms: Public domain | W3C validator |