MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fztp Structured version   Visualization version   GIF version

Theorem fztp 12611
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})

Proof of Theorem fztp
StepHypRef Expression
1 uzid 11908 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 peano2uz 11948 . . 3 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
3 fzsuc 12602 . . 3 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
41, 2, 33syl 18 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
5 zcn 11634 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6 ax-1cn 10251 . . . . . 6 1 ∈ ℂ
7 addass 10280 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
86, 6, 7mp3an23 1577 . . . . 5 (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
95, 8syl 17 . . . 4 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
10 df-2 11340 . . . . 5 2 = (1 + 1)
1110oveq2i 6857 . . . 4 (𝑀 + 2) = (𝑀 + (1 + 1))
129, 11syl6eqr 2817 . . 3 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2))
1312oveq2d 6862 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2)))
14 fzpr 12610 . . . 4 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
1512sneqd 4348 . . . 4 (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)})
1614, 15uneq12d 3932 . . 3 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}))
17 df-tp 4341 . . 3 {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})
1816, 17syl6eqr 2817 . 2 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
194, 13, 183eqtr3d 2807 1 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  cun 3732  {csn 4336  {cpr 4338  {ctp 4340  cfv 6070  (class class class)co 6846  cc 10191  1c1 10194   + caddc 10196  2c2 11332  cz 11629  cuz 11893  ...cfz 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-nn 11280  df-2 11340  df-n0 11544  df-z 11630  df-uz 11894  df-fz 12541
This theorem is referenced by:  fztpval  12616  fz0tp  12655  fz0to4untppr  12657  fzo0to3tp  12769  fzo1to4tp  12771  1cubr  24876  rabren3dioph  38083  nnsum4primesodd  42386  nnsum4primesoddALTV  42387
  Copyright terms: Public domain W3C validator