| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fztp | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fztp | ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid 12750 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 2 | peano2uz 12802 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 3 | fzsuc 13474 | . . 3 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) |
| 5 | zcn 12476 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 6 | ax-1cn 11067 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 7 | addass 11096 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) | |
| 8 | 6, 6, 7 | mp3an23 1455 | . . . . 5 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
| 10 | df-2 12191 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 11 | 10 | oveq2i 7360 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
| 12 | 9, 11 | eqtr4di 2782 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
| 13 | 12 | oveq2d 7365 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2))) |
| 14 | fzpr 13482 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
| 15 | 12 | sneqd 4589 | . . . 4 ⊢ (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)}) |
| 16 | 14, 15 | uneq12d 4120 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})) |
| 17 | df-tp 4582 | . . 3 ⊢ {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}) | |
| 18 | 16, 17 | eqtr4di 2782 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
| 19 | 4, 13, 18 | 3eqtr3d 2772 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 {csn 4577 {cpr 4579 {ctp 4581 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 2c2 12183 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: fztpval 13489 fz0tp 13531 fz0to5un2tp 13534 fzo0to3tp 13655 fzo1to4tp 13657 1cubr 26750 rabren3dioph 42788 nnsum4primesodd 47780 nnsum4primesoddALTV 47781 |
| Copyright terms: Public domain | W3C validator |