![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fztp | Structured version Visualization version GIF version |
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fztp | ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 12834 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
2 | peano2uz 12882 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
3 | fzsuc 13545 | . . 3 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)})) |
5 | zcn 12560 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
6 | ax-1cn 11164 | . . . . . 6 ⊢ 1 ∈ ℂ | |
7 | addass 11193 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) | |
8 | 6, 6, 7 | mp3an23 1449 | . . . . 5 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1))) |
10 | df-2 12272 | . . . . 5 ⊢ 2 = (1 + 1) | |
11 | 10 | oveq2i 7412 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
12 | 9, 11 | eqtr4di 2782 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
13 | 12 | oveq2d 7417 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2))) |
14 | fzpr 13553 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
15 | 12 | sneqd 4632 | . . . 4 ⊢ (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)}) |
16 | 14, 15 | uneq12d 4156 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})) |
17 | df-tp 4625 | . . 3 ⊢ {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}) | |
18 | 16, 17 | eqtr4di 2782 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
19 | 4, 13, 18 | 3eqtr3d 2772 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 {csn 4620 {cpr 4622 {ctp 4624 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 1c1 11107 + caddc 11109 2c2 12264 ℤcz 12555 ℤ≥cuz 12819 ...cfz 13481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 |
This theorem is referenced by: fztpval 13560 fz0tp 13599 fz0to4untppr 13601 fzo0to3tp 13715 fzo1to4tp 13717 1cubr 26690 rabren3dioph 42042 nnsum4primesodd 46949 nnsum4primesoddALTV 46950 |
Copyright terms: Public domain | W3C validator |