MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fztp Structured version   Visualization version   GIF version

Theorem fztp 13047
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})

Proof of Theorem fztp
StepHypRef Expression
1 uzid 12332 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 peano2uz 12376 . . 3 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
3 fzsuc 13038 . . 3 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
41, 2, 33syl 18 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
5 zcn 12060 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6 ax-1cn 10666 . . . . . 6 1 ∈ ℂ
7 addass 10695 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
86, 6, 7mp3an23 1454 . . . . 5 (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
95, 8syl 17 . . . 4 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
10 df-2 11772 . . . . 5 2 = (1 + 1)
1110oveq2i 7175 . . . 4 (𝑀 + 2) = (𝑀 + (1 + 1))
129, 11eqtr4di 2791 . . 3 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2))
1312oveq2d 7180 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2)))
14 fzpr 13046 . . . 4 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
1512sneqd 4525 . . . 4 (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)})
1614, 15uneq12d 4052 . . 3 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}))
17 df-tp 4518 . . 3 {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})
1816, 17eqtr4di 2791 . 2 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
194, 13, 183eqtr3d 2781 1 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  cun 3839  {csn 4513  {cpr 4515  {ctp 4517  cfv 6333  (class class class)co 7164  cc 10606  1c1 10609   + caddc 10611  2c2 11764  cz 12055  cuz 12317  ...cfz 12974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975
This theorem is referenced by:  fztpval  13053  fz0tp  13092  fz0to4untppr  13094  fzo0to3tp  13207  fzo1to4tp  13209  1cubr  25572  rabren3dioph  40193  nnsum4primesodd  44766  nnsum4primesoddALTV  44767
  Copyright terms: Public domain W3C validator