Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fac2xp3 Structured version   Visualization version   GIF version

Theorem fac2xp3 42220
Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
Assertion
Ref Expression
fac2xp3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))

Proof of Theorem fac2xp3
StepHypRef Expression
1 2cn 12338 . . . . . . . . 9 2 ∈ ℂ
2 nn0cn 12533 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 mulcl 11236 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
41, 2, 3sylancr 587 . . . . . . . 8 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℂ)
5 ax-1cn 11210 . . . . . . . . 9 1 ∈ ℂ
6 addass 11239 . . . . . . . . 9 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
71, 5, 6mp3an23 1452 . . . . . . . 8 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
84, 7syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
9 df-3 12327 . . . . . . . . 9 3 = (2 + 1)
109a1i 11 . . . . . . . 8 (𝑥 ∈ ℕ0 → 3 = (2 + 1))
1110oveq2d 7446 . . . . . . 7 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) = ((2 · 𝑥) + (2 + 1)))
128, 11eqtr4d 2777 . . . . . 6 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + 3))
1312fveq2d 6910 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = (!‘((2 · 𝑥) + 3)))
14 2nn0 12540 . . . . . . . 8 2 ∈ ℕ0
15 nn0mulcl 12559 . . . . . . . 8 ((2 ∈ ℕ0𝑥 ∈ ℕ0) → (2 · 𝑥) ∈ ℕ0)
1614, 15mpan 690 . . . . . . 7 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℕ0)
17 nn0addcl 12558 . . . . . . . 8 (((2 · 𝑥) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((2 · 𝑥) + 2) ∈ ℕ0)
1814, 17mpan2 691 . . . . . . 7 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
1916, 18syl 17 . . . . . 6 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
20 facp1 14313 . . . . . 6 (((2 · 𝑥) + 2) ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2119, 20syl 17 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2213, 21eqtr3d 2776 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2312oveq2d 7446 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
2422, 23eqtrd 2774 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
25 addass 11239 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
265, 5, 25mp3an23 1452 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
274, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
28 df-2 12326 . . . . . . . . . . 11 2 = (1 + 1)
2928a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0 → 2 = (1 + 1))
3029oveq2d 7446 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1)))
3127, 30eqtr4d 2777 . . . . . . . 8 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + 2))
3231fveq2d 6910 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = (!‘((2 · 𝑥) + 2)))
33 peano2nn0 12563 . . . . . . . . 9 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
3416, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
35 facp1 14313 . . . . . . . 8 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3634, 35syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3732, 36eqtr3d 2776 . . . . . 6 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3831oveq2d 7446 . . . . . 6 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
3937, 38eqtrd 2774 . . . . 5 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
4039oveq1d 7445 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
4140eqeq2d 2745 . . 3 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) ↔ (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3))))
4224, 41mpbid 232 . 2 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
43 faccl 14318 . . . . 5 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
4434, 43syl 17 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
45 nncn 12271 . . . 4 ((!‘((2 · 𝑥) + 1)) ∈ ℕ → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
4644, 45syl 17 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
47 addcl 11234 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑥) + 2) ∈ ℂ)
484, 1, 47sylancl 586 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℂ)
49 3cn 12344 . . . 4 3 ∈ ℂ
50 addcl 11234 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 3 ∈ ℂ) → ((2 · 𝑥) + 3) ∈ ℂ)
514, 49, 50sylancl 586 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) ∈ ℂ)
52 mulass 11240 . . 3 (((!‘((2 · 𝑥) + 1)) ∈ ℂ ∧ ((2 · 𝑥) + 2) ∈ ℂ ∧ ((2 · 𝑥) + 3) ∈ ℂ) → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5346, 48, 51, 52syl3anc 1370 . 2 (𝑥 ∈ ℕ0 → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5442, 53eqtrd 2774 1 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157  cn 12263  2c2 12318  3c3 12319  0cn0 12523  !cfa 14308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-fac 14309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator