Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fac2xp3 Structured version   Visualization version   GIF version

Theorem fac2xp3 40468
Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
Assertion
Ref Expression
fac2xp3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))

Proof of Theorem fac2xp3
StepHypRef Expression
1 2cn 12153 . . . . . . . . 9 2 ∈ ℂ
2 nn0cn 12348 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 mulcl 11060 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
41, 2, 3sylancr 588 . . . . . . . 8 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℂ)
5 ax-1cn 11034 . . . . . . . . 9 1 ∈ ℂ
6 addass 11063 . . . . . . . . 9 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
71, 5, 6mp3an23 1453 . . . . . . . 8 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
84, 7syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
9 df-3 12142 . . . . . . . . 9 3 = (2 + 1)
109a1i 11 . . . . . . . 8 (𝑥 ∈ ℕ0 → 3 = (2 + 1))
1110oveq2d 7357 . . . . . . 7 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) = ((2 · 𝑥) + (2 + 1)))
128, 11eqtr4d 2780 . . . . . 6 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + 3))
1312fveq2d 6833 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = (!‘((2 · 𝑥) + 3)))
14 2nn0 12355 . . . . . . . 8 2 ∈ ℕ0
15 nn0mulcl 12374 . . . . . . . 8 ((2 ∈ ℕ0𝑥 ∈ ℕ0) → (2 · 𝑥) ∈ ℕ0)
1614, 15mpan 688 . . . . . . 7 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℕ0)
17 nn0addcl 12373 . . . . . . . 8 (((2 · 𝑥) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((2 · 𝑥) + 2) ∈ ℕ0)
1814, 17mpan2 689 . . . . . . 7 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
1916, 18syl 17 . . . . . 6 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
20 facp1 14097 . . . . . 6 (((2 · 𝑥) + 2) ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2119, 20syl 17 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2213, 21eqtr3d 2779 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2312oveq2d 7357 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
2422, 23eqtrd 2777 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
25 addass 11063 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
265, 5, 25mp3an23 1453 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
274, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
28 df-2 12141 . . . . . . . . . . 11 2 = (1 + 1)
2928a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0 → 2 = (1 + 1))
3029oveq2d 7357 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1)))
3127, 30eqtr4d 2780 . . . . . . . 8 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + 2))
3231fveq2d 6833 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = (!‘((2 · 𝑥) + 2)))
33 peano2nn0 12378 . . . . . . . . 9 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
3416, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
35 facp1 14097 . . . . . . . 8 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3634, 35syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3732, 36eqtr3d 2779 . . . . . 6 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3831oveq2d 7357 . . . . . 6 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
3937, 38eqtrd 2777 . . . . 5 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
4039oveq1d 7356 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
4140eqeq2d 2748 . . 3 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) ↔ (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3))))
4224, 41mpbid 231 . 2 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
43 faccl 14102 . . . . 5 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
4434, 43syl 17 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
45 nncn 12086 . . . 4 ((!‘((2 · 𝑥) + 1)) ∈ ℕ → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
4644, 45syl 17 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
47 addcl 11058 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑥) + 2) ∈ ℂ)
484, 1, 47sylancl 587 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℂ)
49 3cn 12159 . . . 4 3 ∈ ℂ
50 addcl 11058 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 3 ∈ ℂ) → ((2 · 𝑥) + 3) ∈ ℂ)
514, 49, 50sylancl 587 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) ∈ ℂ)
52 mulass 11064 . . 3 (((!‘((2 · 𝑥) + 1)) ∈ ℂ ∧ ((2 · 𝑥) + 2) ∈ ℂ ∧ ((2 · 𝑥) + 3) ∈ ℂ) → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5346, 48, 51, 52syl3anc 1371 . 2 (𝑥 ∈ ℕ0 → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5442, 53eqtrd 2777 1 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6483  (class class class)co 7341  cc 10974  1c1 10977   + caddc 10979   · cmul 10981  cn 12078  2c2 12133  3c3 12134  0cn0 12338  !cfa 14092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-seq 13827  df-fac 14093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator