Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fac2xp3 Structured version   Visualization version   GIF version

Theorem fac2xp3 42196
Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
Assertion
Ref Expression
fac2xp3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))

Proof of Theorem fac2xp3
StepHypRef Expression
1 2cn 12368 . . . . . . . . 9 2 ∈ ℂ
2 nn0cn 12563 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 mulcl 11268 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
41, 2, 3sylancr 586 . . . . . . . 8 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℂ)
5 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
6 addass 11271 . . . . . . . . 9 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
71, 5, 6mp3an23 1453 . . . . . . . 8 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
84, 7syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
9 df-3 12357 . . . . . . . . 9 3 = (2 + 1)
109a1i 11 . . . . . . . 8 (𝑥 ∈ ℕ0 → 3 = (2 + 1))
1110oveq2d 7464 . . . . . . 7 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) = ((2 · 𝑥) + (2 + 1)))
128, 11eqtr4d 2783 . . . . . 6 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + 3))
1312fveq2d 6924 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = (!‘((2 · 𝑥) + 3)))
14 2nn0 12570 . . . . . . . 8 2 ∈ ℕ0
15 nn0mulcl 12589 . . . . . . . 8 ((2 ∈ ℕ0𝑥 ∈ ℕ0) → (2 · 𝑥) ∈ ℕ0)
1614, 15mpan 689 . . . . . . 7 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℕ0)
17 nn0addcl 12588 . . . . . . . 8 (((2 · 𝑥) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((2 · 𝑥) + 2) ∈ ℕ0)
1814, 17mpan2 690 . . . . . . 7 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
1916, 18syl 17 . . . . . 6 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
20 facp1 14327 . . . . . 6 (((2 · 𝑥) + 2) ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2119, 20syl 17 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2213, 21eqtr3d 2782 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2312oveq2d 7464 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
2422, 23eqtrd 2780 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
25 addass 11271 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
265, 5, 25mp3an23 1453 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
274, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
28 df-2 12356 . . . . . . . . . . 11 2 = (1 + 1)
2928a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0 → 2 = (1 + 1))
3029oveq2d 7464 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1)))
3127, 30eqtr4d 2783 . . . . . . . 8 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + 2))
3231fveq2d 6924 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = (!‘((2 · 𝑥) + 2)))
33 peano2nn0 12593 . . . . . . . . 9 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
3416, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
35 facp1 14327 . . . . . . . 8 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3634, 35syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3732, 36eqtr3d 2782 . . . . . 6 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3831oveq2d 7464 . . . . . 6 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
3937, 38eqtrd 2780 . . . . 5 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
4039oveq1d 7463 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
4140eqeq2d 2751 . . 3 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) ↔ (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3))))
4224, 41mpbid 232 . 2 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
43 faccl 14332 . . . . 5 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
4434, 43syl 17 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
45 nncn 12301 . . . 4 ((!‘((2 · 𝑥) + 1)) ∈ ℕ → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
4644, 45syl 17 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
47 addcl 11266 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑥) + 2) ∈ ℂ)
484, 1, 47sylancl 585 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℂ)
49 3cn 12374 . . . 4 3 ∈ ℂ
50 addcl 11266 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 3 ∈ ℂ) → ((2 · 𝑥) + 3) ∈ ℂ)
514, 49, 50sylancl 585 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) ∈ ℂ)
52 mulass 11272 . . 3 (((!‘((2 · 𝑥) + 1)) ∈ ℂ ∧ ((2 · 𝑥) + 2) ∈ ℂ ∧ ((2 · 𝑥) + 3) ∈ ℂ) → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5346, 48, 51, 52syl3anc 1371 . 2 (𝑥 ∈ ℕ0 → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5442, 53eqtrd 2780 1 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  2c2 12348  3c3 12349  0cn0 12553  !cfa 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-fac 14323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator