Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fac2xp3 Structured version   Visualization version   GIF version

Theorem fac2xp3 40088
Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
Assertion
Ref Expression
fac2xp3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))

Proof of Theorem fac2xp3
StepHypRef Expression
1 2cn 11978 . . . . . . . . 9 2 ∈ ℂ
2 nn0cn 12173 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 mulcl 10886 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
41, 2, 3sylancr 586 . . . . . . . 8 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℂ)
5 ax-1cn 10860 . . . . . . . . 9 1 ∈ ℂ
6 addass 10889 . . . . . . . . 9 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
71, 5, 6mp3an23 1451 . . . . . . . 8 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
84, 7syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + (2 + 1)))
9 df-3 11967 . . . . . . . . 9 3 = (2 + 1)
109a1i 11 . . . . . . . 8 (𝑥 ∈ ℕ0 → 3 = (2 + 1))
1110oveq2d 7271 . . . . . . 7 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) = ((2 · 𝑥) + (2 + 1)))
128, 11eqtr4d 2781 . . . . . 6 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 2) + 1) = ((2 · 𝑥) + 3))
1312fveq2d 6760 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = (!‘((2 · 𝑥) + 3)))
14 2nn0 12180 . . . . . . . 8 2 ∈ ℕ0
15 nn0mulcl 12199 . . . . . . . 8 ((2 ∈ ℕ0𝑥 ∈ ℕ0) → (2 · 𝑥) ∈ ℕ0)
1614, 15mpan 686 . . . . . . 7 (𝑥 ∈ ℕ0 → (2 · 𝑥) ∈ ℕ0)
17 nn0addcl 12198 . . . . . . . 8 (((2 · 𝑥) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((2 · 𝑥) + 2) ∈ ℕ0)
1814, 17mpan2 687 . . . . . . 7 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
1916, 18syl 17 . . . . . 6 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℕ0)
20 facp1 13920 . . . . . 6 (((2 · 𝑥) + 2) ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2119, 20syl 17 . . . . 5 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2213, 21eqtr3d 2780 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)))
2312oveq2d 7271 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · (((2 · 𝑥) + 2) + 1)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
2422, 23eqtrd 2778 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
25 addass 10889 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
265, 5, 25mp3an23 1451 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
274, 26syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
28 df-2 11966 . . . . . . . . . . 11 2 = (1 + 1)
2928a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0 → 2 = (1 + 1))
3029oveq2d 7271 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1)))
3127, 30eqtr4d 2781 . . . . . . . 8 (𝑥 ∈ ℕ0 → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + 2))
3231fveq2d 6760 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = (!‘((2 · 𝑥) + 2)))
33 peano2nn0 12203 . . . . . . . . 9 ((2 · 𝑥) ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
3416, 33syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 1) ∈ ℕ0)
35 facp1 13920 . . . . . . . 8 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3634, 35syl 17 . . . . . . 7 (𝑥 ∈ ℕ0 → (!‘(((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3732, 36eqtr3d 2780 . . . . . 6 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)))
3831oveq2d 7271 . . . . . 6 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 1) + 1)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
3937, 38eqtrd 2778 . . . . 5 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 2)) = ((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)))
4039oveq1d 7270 . . . 4 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
4140eqeq2d 2749 . . 3 (𝑥 ∈ ℕ0 → ((!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) ↔ (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3))))
4224, 41mpbid 231 . 2 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)))
43 faccl 13925 . . . . 5 (((2 · 𝑥) + 1) ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
4434, 43syl 17 . . . 4 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℕ)
45 nncn 11911 . . . 4 ((!‘((2 · 𝑥) + 1)) ∈ ℕ → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
4644, 45syl 17 . . 3 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 1)) ∈ ℂ)
47 addcl 10884 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑥) + 2) ∈ ℂ)
484, 1, 47sylancl 585 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 2) ∈ ℂ)
49 3cn 11984 . . . 4 3 ∈ ℂ
50 addcl 10884 . . . 4 (((2 · 𝑥) ∈ ℂ ∧ 3 ∈ ℂ) → ((2 · 𝑥) + 3) ∈ ℂ)
514, 49, 50sylancl 585 . . 3 (𝑥 ∈ ℕ0 → ((2 · 𝑥) + 3) ∈ ℂ)
52 mulass 10890 . . 3 (((!‘((2 · 𝑥) + 1)) ∈ ℂ ∧ ((2 · 𝑥) + 2) ∈ ℂ ∧ ((2 · 𝑥) + 3) ∈ ℂ) → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5346, 48, 51, 52syl3anc 1369 . 2 (𝑥 ∈ ℕ0 → (((!‘((2 · 𝑥) + 1)) · ((2 · 𝑥) + 2)) · ((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
5442, 53eqtrd 2778 1 (𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  2c2 11958  3c3 11959  0cn0 12163  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator