MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1lem Structured version   Visualization version   GIF version

Theorem odd2np1lem 16148
Description: Lemma for odd2np1 16149. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Distinct variable groups:   𝑘,𝑁   𝑛,𝑁

Proof of Theorem odd2np1lem
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2748 . . . 4 (𝑗 = 0 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 0))
21rexbidv 3171 . . 3 (𝑗 = 0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0))
3 eqeq2 2748 . . . 4 (𝑗 = 0 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 0))
43rexbidv 3171 . . 3 (𝑗 = 0 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0))
52, 4orbi12d 916 . 2 (𝑗 = 0 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)))
6 eqeq2 2748 . . . . 5 (𝑗 = 𝑚 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑚))
76rexbidv 3171 . . . 4 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚))
8 oveq2 7345 . . . . . . 7 (𝑛 = 𝑥 → (2 · 𝑛) = (2 · 𝑥))
98oveq1d 7352 . . . . . 6 (𝑛 = 𝑥 → ((2 · 𝑛) + 1) = ((2 · 𝑥) + 1))
109eqeq1d 2738 . . . . 5 (𝑛 = 𝑥 → (((2 · 𝑛) + 1) = 𝑚 ↔ ((2 · 𝑥) + 1) = 𝑚))
1110cbvrexvw 3222 . . . 4 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚)
127, 11bitrdi 286 . . 3 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
13 eqeq2 2748 . . . . 5 (𝑗 = 𝑚 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑚))
1413rexbidv 3171 . . . 4 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚))
15 oveq1 7344 . . . . . 6 (𝑘 = 𝑦 → (𝑘 · 2) = (𝑦 · 2))
1615eqeq1d 2738 . . . . 5 (𝑘 = 𝑦 → ((𝑘 · 2) = 𝑚 ↔ (𝑦 · 2) = 𝑚))
1716cbvrexvw 3222 . . . 4 (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)
1814, 17bitrdi 286 . . 3 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚))
1912, 18orbi12d 916 . 2 (𝑗 = 𝑚 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)))
20 eqeq2 2748 . . . 4 (𝑗 = (𝑚 + 1) → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
2120rexbidv 3171 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
22 eqeq2 2748 . . . 4 (𝑗 = (𝑚 + 1) → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = (𝑚 + 1)))
2322rexbidv 3171 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
2421, 23orbi12d 916 . 2 (𝑗 = (𝑚 + 1) → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
25 eqeq2 2748 . . . 4 (𝑗 = 𝑁 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑁))
2625rexbidv 3171 . . 3 (𝑗 = 𝑁 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
27 eqeq2 2748 . . . 4 (𝑗 = 𝑁 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑁))
2827rexbidv 3171 . . 3 (𝑗 = 𝑁 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
2926, 28orbi12d 916 . 2 (𝑗 = 𝑁 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
30 0z 12431 . . . 4 0 ∈ ℤ
31 2cn 12149 . . . . 5 2 ∈ ℂ
3231mul02i 11265 . . . 4 (0 · 2) = 0
33 oveq1 7344 . . . . . 6 (𝑘 = 0 → (𝑘 · 2) = (0 · 2))
3433eqeq1d 2738 . . . . 5 (𝑘 = 0 → ((𝑘 · 2) = 0 ↔ (0 · 2) = 0))
3534rspcev 3570 . . . 4 ((0 ∈ ℤ ∧ (0 · 2) = 0) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
3630, 32, 35mp2an 689 . . 3 𝑘 ∈ ℤ (𝑘 · 2) = 0
3736olci 863 . 2 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
38 orcom 867 . . 3 ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) ↔ (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
39 zcn 12425 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
40 mulcom 11058 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) = (2 · 𝑦))
4139, 31, 40sylancl 586 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦 · 2) = (2 · 𝑦))
4241adantl 482 . . . . . . 7 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → (𝑦 · 2) = (2 · 𝑦))
4342eqeq1d 2738 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 ↔ (2 · 𝑦) = 𝑚))
44 eqid 2736 . . . . . . . . 9 ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)
45 oveq2 7345 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (2 · 𝑛) = (2 · 𝑦))
4645oveq1d 7352 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4746eqeq1d 2738 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)))
4847rspcev 3570 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4944, 48mpan2 688 . . . . . . . 8 (𝑦 ∈ ℤ → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
50 oveq1 7344 . . . . . . . . . 10 ((2 · 𝑦) = 𝑚 → ((2 · 𝑦) + 1) = (𝑚 + 1))
5150eqeq2d 2747 . . . . . . . . 9 ((2 · 𝑦) = 𝑚 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5251rexbidv 3171 . . . . . . . 8 ((2 · 𝑦) = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5349, 52syl5ibcom 244 . . . . . . 7 (𝑦 ∈ ℤ → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5453adantl 482 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5543, 54sylbid 239 . . . . 5 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5655rexlimdva 3148 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
57 peano2z 12462 . . . . . . 7 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
58 zcn 12425 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
59 mulcom 11058 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑥 · 2) = (2 · 𝑥))
6031, 59mpan2 688 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 2) = (2 · 𝑥))
6131mulid2i 11081 . . . . . . . . . . . . 13 (1 · 2) = 2
6261a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (1 · 2) = 2)
6360, 62oveq12d 7355 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + 2))
64 df-2 12137 . . . . . . . . . . . 12 2 = (1 + 1)
6564oveq2i 7348 . . . . . . . . . . 11 ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1))
6663, 65eqtrdi 2792 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + (1 + 1)))
67 ax-1cn 11030 . . . . . . . . . . 11 1 ∈ ℂ
68 adddir 11067 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
6967, 31, 68mp3an23 1452 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
70 mulcl 11056 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
7131, 70mpan 687 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
72 addass 11059 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7367, 67, 72mp3an23 1452 . . . . . . . . . . 11 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7471, 73syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7566, 69, 743eqtr4d 2786 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7658, 75syl 17 . . . . . . . 8 (𝑥 ∈ ℤ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7776adantl 482 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
78 oveq1 7344 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → (𝑘 · 2) = ((𝑥 + 1) · 2))
7978eqeq1d 2738 . . . . . . . 8 (𝑘 = (𝑥 + 1) → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)))
8079rspcev 3570 . . . . . . 7 (((𝑥 + 1) ∈ ℤ ∧ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
8157, 77, 80syl2an2 683 . . . . . 6 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
82 oveq1 7344 . . . . . . . 8 (((2 · 𝑥) + 1) = 𝑚 → (((2 · 𝑥) + 1) + 1) = (𝑚 + 1))
8382eqeq2d 2747 . . . . . . 7 (((2 · 𝑥) + 1) = 𝑚 → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ (𝑘 · 2) = (𝑚 + 1)))
8483rexbidv 3171 . . . . . 6 (((2 · 𝑥) + 1) = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8581, 84syl5ibcom 244 . . . . 5 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8685rexlimdva 3148 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8756, 86orim12d 962 . . 3 (𝑚 ∈ ℕ0 → ((∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
8838, 87biimtrid 241 . 2 (𝑚 ∈ ℕ0 → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
895, 19, 24, 29, 37, 88nn0ind 12516 1 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  wrex 3070  (class class class)co 7337  cc 10970  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  2c2 12129  0cn0 12334  cz 12420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421
This theorem is referenced by:  odd2np1  16149
  Copyright terms: Public domain W3C validator