MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1lem Structured version   Visualization version   GIF version

Theorem odd2np1lem 16280
Description: Lemma for odd2np1 16281. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (๐‘ โˆˆ โ„•0 โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘ โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘))
Distinct variable groups:   ๐‘˜,๐‘   ๐‘›,๐‘

Proof of Theorem odd2np1lem
Dummy variables ๐‘— ๐‘š ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2736 . . . 4 (๐‘— = 0 โ†’ (((2 ยท ๐‘›) + 1) = ๐‘— โ†” ((2 ยท ๐‘›) + 1) = 0))
21rexbidv 3170 . . 3 (๐‘— = 0 โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = 0))
3 eqeq2 2736 . . . 4 (๐‘— = 0 โ†’ ((๐‘˜ ยท 2) = ๐‘— โ†” (๐‘˜ ยท 2) = 0))
43rexbidv 3170 . . 3 (๐‘— = 0 โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘— โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = 0))
52, 4orbi12d 915 . 2 (๐‘— = 0 โ†’ ((โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘—) โ†” (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = 0 โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = 0)))
6 eqeq2 2736 . . . . 5 (๐‘— = ๐‘š โ†’ (((2 ยท ๐‘›) + 1) = ๐‘— โ†” ((2 ยท ๐‘›) + 1) = ๐‘š))
76rexbidv 3170 . . . 4 (๐‘— = ๐‘š โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘š))
8 oveq2 7409 . . . . . . 7 (๐‘› = ๐‘ฅ โ†’ (2 ยท ๐‘›) = (2 ยท ๐‘ฅ))
98oveq1d 7416 . . . . . 6 (๐‘› = ๐‘ฅ โ†’ ((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฅ) + 1))
109eqeq1d 2726 . . . . 5 (๐‘› = ๐‘ฅ โ†’ (((2 ยท ๐‘›) + 1) = ๐‘š โ†” ((2 ยท ๐‘ฅ) + 1) = ๐‘š))
1110cbvrexvw 3227 . . . 4 (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘š โ†” โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š)
127, 11bitrdi 287 . . 3 (๐‘— = ๐‘š โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โ†” โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š))
13 eqeq2 2736 . . . . 5 (๐‘— = ๐‘š โ†’ ((๐‘˜ ยท 2) = ๐‘— โ†” (๐‘˜ ยท 2) = ๐‘š))
1413rexbidv 3170 . . . 4 (๐‘— = ๐‘š โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘— โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘š))
15 oveq1 7408 . . . . . 6 (๐‘˜ = ๐‘ฆ โ†’ (๐‘˜ ยท 2) = (๐‘ฆ ยท 2))
1615eqeq1d 2726 . . . . 5 (๐‘˜ = ๐‘ฆ โ†’ ((๐‘˜ ยท 2) = ๐‘š โ†” (๐‘ฆ ยท 2) = ๐‘š))
1716cbvrexvw 3227 . . . 4 (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘š โ†” โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š)
1814, 17bitrdi 287 . . 3 (๐‘— = ๐‘š โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘— โ†” โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š))
1912, 18orbi12d 915 . 2 (๐‘— = ๐‘š โ†’ ((โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘—) โ†” (โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š โˆจ โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š)))
20 eqeq2 2736 . . . 4 (๐‘— = (๐‘š + 1) โ†’ (((2 ยท ๐‘›) + 1) = ๐‘— โ†” ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
2120rexbidv 3170 . . 3 (๐‘— = (๐‘š + 1) โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
22 eqeq2 2736 . . . 4 (๐‘— = (๐‘š + 1) โ†’ ((๐‘˜ ยท 2) = ๐‘— โ†” (๐‘˜ ยท 2) = (๐‘š + 1)))
2322rexbidv 3170 . . 3 (๐‘— = (๐‘š + 1) โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘— โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1)))
2421, 23orbi12d 915 . 2 (๐‘— = (๐‘š + 1) โ†’ ((โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘—) โ†” (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1) โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1))))
25 eqeq2 2736 . . . 4 (๐‘— = ๐‘ โ†’ (((2 ยท ๐‘›) + 1) = ๐‘— โ†” ((2 ยท ๐‘›) + 1) = ๐‘))
2625rexbidv 3170 . . 3 (๐‘— = ๐‘ โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘))
27 eqeq2 2736 . . . 4 (๐‘— = ๐‘ โ†’ ((๐‘˜ ยท 2) = ๐‘— โ†” (๐‘˜ ยท 2) = ๐‘))
2827rexbidv 3170 . . 3 (๐‘— = ๐‘ โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘— โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘))
2926, 28orbi12d 915 . 2 (๐‘— = ๐‘ โ†’ ((โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘— โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘—) โ†” (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘ โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘)))
30 0z 12566 . . . 4 0 โˆˆ โ„ค
31 2cn 12284 . . . . 5 2 โˆˆ โ„‚
3231mul02i 11400 . . . 4 (0 ยท 2) = 0
33 oveq1 7408 . . . . . 6 (๐‘˜ = 0 โ†’ (๐‘˜ ยท 2) = (0 ยท 2))
3433eqeq1d 2726 . . . . 5 (๐‘˜ = 0 โ†’ ((๐‘˜ ยท 2) = 0 โ†” (0 ยท 2) = 0))
3534rspcev 3604 . . . 4 ((0 โˆˆ โ„ค โˆง (0 ยท 2) = 0) โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = 0)
3630, 32, 35mp2an 689 . . 3 โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = 0
3736olci 863 . 2 (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = 0 โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = 0)
38 orcom 867 . . 3 ((โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š โˆจ โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š) โ†” (โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š โˆจ โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š))
39 zcn 12560 . . . . . . . . 9 (๐‘ฆ โˆˆ โ„ค โ†’ ๐‘ฆ โˆˆ โ„‚)
40 mulcom 11192 . . . . . . . . 9 ((๐‘ฆ โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚) โ†’ (๐‘ฆ ยท 2) = (2 ยท ๐‘ฆ))
4139, 31, 40sylancl 585 . . . . . . . 8 (๐‘ฆ โˆˆ โ„ค โ†’ (๐‘ฆ ยท 2) = (2 ยท ๐‘ฆ))
4241adantl 481 . . . . . . 7 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ (๐‘ฆ ยท 2) = (2 ยท ๐‘ฆ))
4342eqeq1d 2726 . . . . . 6 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ ((๐‘ฆ ยท 2) = ๐‘š โ†” (2 ยท ๐‘ฆ) = ๐‘š))
44 eqid 2724 . . . . . . . . 9 ((2 ยท ๐‘ฆ) + 1) = ((2 ยท ๐‘ฆ) + 1)
45 oveq2 7409 . . . . . . . . . . . 12 (๐‘› = ๐‘ฆ โ†’ (2 ยท ๐‘›) = (2 ยท ๐‘ฆ))
4645oveq1d 7416 . . . . . . . . . . 11 (๐‘› = ๐‘ฆ โ†’ ((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1))
4746eqeq1d 2726 . . . . . . . . . 10 (๐‘› = ๐‘ฆ โ†’ (((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1) โ†” ((2 ยท ๐‘ฆ) + 1) = ((2 ยท ๐‘ฆ) + 1)))
4847rspcev 3604 . . . . . . . . 9 ((๐‘ฆ โˆˆ โ„ค โˆง ((2 ยท ๐‘ฆ) + 1) = ((2 ยท ๐‘ฆ) + 1)) โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1))
4944, 48mpan2 688 . . . . . . . 8 (๐‘ฆ โˆˆ โ„ค โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1))
50 oveq1 7408 . . . . . . . . . 10 ((2 ยท ๐‘ฆ) = ๐‘š โ†’ ((2 ยท ๐‘ฆ) + 1) = (๐‘š + 1))
5150eqeq2d 2735 . . . . . . . . 9 ((2 ยท ๐‘ฆ) = ๐‘š โ†’ (((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1) โ†” ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
5251rexbidv 3170 . . . . . . . 8 ((2 ยท ๐‘ฆ) = ๐‘š โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ((2 ยท ๐‘ฆ) + 1) โ†” โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
5349, 52syl5ibcom 244 . . . . . . 7 (๐‘ฆ โˆˆ โ„ค โ†’ ((2 ยท ๐‘ฆ) = ๐‘š โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
5453adantl 481 . . . . . 6 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ ((2 ยท ๐‘ฆ) = ๐‘š โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
5543, 54sylbid 239 . . . . 5 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ ((๐‘ฆ ยท 2) = ๐‘š โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
5655rexlimdva 3147 . . . 4 (๐‘š โˆˆ โ„•0 โ†’ (โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š โ†’ โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1)))
57 peano2z 12600 . . . . . . 7 (๐‘ฅ โˆˆ โ„ค โ†’ (๐‘ฅ + 1) โˆˆ โ„ค)
58 zcn 12560 . . . . . . . . 9 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
59 mulcom 11192 . . . . . . . . . . . . 13 ((๐‘ฅ โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚) โ†’ (๐‘ฅ ยท 2) = (2 ยท ๐‘ฅ))
6031, 59mpan2 688 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„‚ โ†’ (๐‘ฅ ยท 2) = (2 ยท ๐‘ฅ))
6131mullidi 11216 . . . . . . . . . . . . 13 (1 ยท 2) = 2
6261a1i 11 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„‚ โ†’ (1 ยท 2) = 2)
6360, 62oveq12d 7419 . . . . . . . . . . 11 (๐‘ฅ โˆˆ โ„‚ โ†’ ((๐‘ฅ ยท 2) + (1 ยท 2)) = ((2 ยท ๐‘ฅ) + 2))
64 df-2 12272 . . . . . . . . . . . 12 2 = (1 + 1)
6564oveq2i 7412 . . . . . . . . . . 11 ((2 ยท ๐‘ฅ) + 2) = ((2 ยท ๐‘ฅ) + (1 + 1))
6663, 65eqtrdi 2780 . . . . . . . . . 10 (๐‘ฅ โˆˆ โ„‚ โ†’ ((๐‘ฅ ยท 2) + (1 ยท 2)) = ((2 ยท ๐‘ฅ) + (1 + 1)))
67 ax-1cn 11164 . . . . . . . . . . 11 1 โˆˆ โ„‚
68 adddir 11202 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚) โ†’ ((๐‘ฅ + 1) ยท 2) = ((๐‘ฅ ยท 2) + (1 ยท 2)))
6967, 31, 68mp3an23 1449 . . . . . . . . . 10 (๐‘ฅ โˆˆ โ„‚ โ†’ ((๐‘ฅ + 1) ยท 2) = ((๐‘ฅ ยท 2) + (1 ยท 2)))
70 mulcl 11190 . . . . . . . . . . . 12 ((2 โˆˆ โ„‚ โˆง ๐‘ฅ โˆˆ โ„‚) โ†’ (2 ยท ๐‘ฅ) โˆˆ โ„‚)
7131, 70mpan 687 . . . . . . . . . . 11 (๐‘ฅ โˆˆ โ„‚ โ†’ (2 ยท ๐‘ฅ) โˆˆ โ„‚)
72 addass 11193 . . . . . . . . . . . 12 (((2 ยท ๐‘ฅ) โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ (((2 ยท ๐‘ฅ) + 1) + 1) = ((2 ยท ๐‘ฅ) + (1 + 1)))
7367, 67, 72mp3an23 1449 . . . . . . . . . . 11 ((2 ยท ๐‘ฅ) โˆˆ โ„‚ โ†’ (((2 ยท ๐‘ฅ) + 1) + 1) = ((2 ยท ๐‘ฅ) + (1 + 1)))
7471, 73syl 17 . . . . . . . . . 10 (๐‘ฅ โˆˆ โ„‚ โ†’ (((2 ยท ๐‘ฅ) + 1) + 1) = ((2 ยท ๐‘ฅ) + (1 + 1)))
7566, 69, 743eqtr4d 2774 . . . . . . . . 9 (๐‘ฅ โˆˆ โ„‚ โ†’ ((๐‘ฅ + 1) ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1))
7658, 75syl 17 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ค โ†’ ((๐‘ฅ + 1) ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1))
7776adantl 481 . . . . . . 7 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ + 1) ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1))
78 oveq1 7408 . . . . . . . . 9 (๐‘˜ = (๐‘ฅ + 1) โ†’ (๐‘˜ ยท 2) = ((๐‘ฅ + 1) ยท 2))
7978eqeq1d 2726 . . . . . . . 8 (๐‘˜ = (๐‘ฅ + 1) โ†’ ((๐‘˜ ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1) โ†” ((๐‘ฅ + 1) ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1)))
8079rspcev 3604 . . . . . . 7 (((๐‘ฅ + 1) โˆˆ โ„ค โˆง ((๐‘ฅ + 1) ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1)) โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1))
8157, 77, 80syl2an2 683 . . . . . 6 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1))
82 oveq1 7408 . . . . . . . 8 (((2 ยท ๐‘ฅ) + 1) = ๐‘š โ†’ (((2 ยท ๐‘ฅ) + 1) + 1) = (๐‘š + 1))
8382eqeq2d 2735 . . . . . . 7 (((2 ยท ๐‘ฅ) + 1) = ๐‘š โ†’ ((๐‘˜ ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1) โ†” (๐‘˜ ยท 2) = (๐‘š + 1)))
8483rexbidv 3170 . . . . . 6 (((2 ยท ๐‘ฅ) + 1) = ๐‘š โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (((2 ยท ๐‘ฅ) + 1) + 1) โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1)))
8581, 84syl5ibcom 244 . . . . 5 ((๐‘š โˆˆ โ„•0 โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ (((2 ยท ๐‘ฅ) + 1) = ๐‘š โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1)))
8685rexlimdva 3147 . . . 4 (๐‘š โˆˆ โ„•0 โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1)))
8756, 86orim12d 961 . . 3 (๐‘š โˆˆ โ„•0 โ†’ ((โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š โˆจ โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š) โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1) โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1))))
8838, 87biimtrid 241 . 2 (๐‘š โˆˆ โ„•0 โ†’ ((โˆƒ๐‘ฅ โˆˆ โ„ค ((2 ยท ๐‘ฅ) + 1) = ๐‘š โˆจ โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘ฆ ยท 2) = ๐‘š) โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = (๐‘š + 1) โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = (๐‘š + 1))))
895, 19, 24, 29, 37, 88nn0ind 12654 1 (๐‘ โˆˆ โ„•0 โ†’ (โˆƒ๐‘› โˆˆ โ„ค ((2 ยท ๐‘›) + 1) = ๐‘ โˆจ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท 2) = ๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆจ wo 844   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3062  (class class class)co 7401  โ„‚cc 11104  0cc0 11106  1c1 11107   + caddc 11109   ยท cmul 11111  2c2 12264  โ„•0cn0 12469  โ„คcz 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556
This theorem is referenced by:  odd2np1  16281
  Copyright terms: Public domain W3C validator