![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnaddcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 + 𝑥) = (𝐴 + 1)) | |
2 | 1 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ))) |
4 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝑦) ∈ ℕ)) |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ))) |
7 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 1))) | |
8 | 7 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
10 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵)) | |
11 | 10 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝐵) ∈ ℕ)) |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ))) |
13 | peano2nn 12305 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
14 | peano2nn 12305 | . . . . . 6 ⊢ ((𝐴 + 𝑦) ∈ ℕ → ((𝐴 + 𝑦) + 1) ∈ ℕ) | |
15 | nncn 12301 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
16 | nncn 12301 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
17 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
18 | addass 11271 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) | |
19 | 17, 18 | mp3an3 1450 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) |
20 | 15, 16, 19 | syl2an 595 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) |
21 | 20 | eleq1d 2829 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (((𝐴 + 𝑦) + 1) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
22 | 14, 21 | imbitrid 244 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
23 | 22 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
24 | 23 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
25 | 3, 6, 9, 12, 13, 24 | nnind 12311 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ)) |
26 | 25 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 |
This theorem is referenced by: nnmulcl 12317 nnaddcld 12345 nnnn0addcl 12583 nn0addcl 12588 zaddcl 12683 9p1e10 12760 pythagtriplem4 16866 vdwapun 17021 vdwap1 17024 vdwlem2 17029 prmgaplem7 17104 prmgapprmolem 17108 mulgnndir 19143 uniioombllem3 25639 ballotlem1 34451 ballotlem2 34453 ballotlemfmpn 34459 ballotlem4 34463 ballotlemimin 34470 ballotlemsdom 34476 ballotlemsel1i 34477 ballotlemfrceq 34493 ballotlemfrcn0 34494 ballotlem1ri 34499 ballotth 34502 nndivsub 36423 nnadddir 42259 gbepos 47632 gbowpos 47633 nnsgrpmgm 47899 |
Copyright terms: Public domain | W3C validator |