MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcl Structured version   Visualization version   GIF version

Theorem nnaddcl 12234
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnaddcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7416 . . . . 5 (𝑥 = 1 → (𝐴 + 𝑥) = (𝐴 + 1))
21eleq1d 2818 . . . 4 (𝑥 = 1 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
32imbi2d 340 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)))
4 oveq2 7416 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
54eleq1d 2818 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝑦) ∈ ℕ))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ)))
7 oveq2 7416 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 1)))
87eleq1d 2818 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
10 oveq2 7416 . . . . 5 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1110eleq1d 2818 . . . 4 (𝑥 = 𝐵 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝐵) ∈ ℕ))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ)))
13 peano2nn 12223 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
14 peano2nn 12223 . . . . . 6 ((𝐴 + 𝑦) ∈ ℕ → ((𝐴 + 𝑦) + 1) ∈ ℕ)
15 nncn 12219 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
16 nncn 12219 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
17 ax-1cn 11167 . . . . . . . . 9 1 ∈ ℂ
18 addass 11196 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
1917, 18mp3an3 1450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2015, 16, 19syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2120eleq1d 2818 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (((𝐴 + 𝑦) + 1) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
2214, 21imbitrid 243 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))
2322expcom 414 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
2423a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
253, 6, 9, 12, 13, 24nnind 12229 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ))
2625impcom 408 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  (class class class)co 7408  cc 11107  1c1 11110   + caddc 11112  cn 12211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-1cn 11167  ax-addcl 11169  ax-addass 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-nn 12212
This theorem is referenced by:  nnmulcl  12235  nnaddcld  12263  nnnn0addcl  12501  nn0addcl  12506  zaddcl  12601  9p1e10  12678  pythagtriplem4  16751  vdwapun  16906  vdwap1  16909  vdwlem2  16914  prmgaplem7  16989  prmgapprmolem  16993  mulgnndir  18982  uniioombllem3  25101  ballotlem1  33480  ballotlem2  33482  ballotlemfmpn  33488  ballotlem4  33492  ballotlemimin  33499  ballotlemsdom  33505  ballotlemsel1i  33506  ballotlemfrceq  33522  ballotlemfrcn0  33523  ballotlem1ri  33528  ballotth  33531  nndivsub  35337  nnadddir  41186  gbepos  46416  gbowpos  46417  nnsgrpmgm  46576
  Copyright terms: Public domain W3C validator