![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnaddcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 + 𝑥) = (𝐴 + 1)) | |
2 | 1 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
3 | 2 | imbi2d 341 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ))) |
4 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) | |
5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝑦) ∈ ℕ)) |
6 | 5 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ))) |
7 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 1))) | |
8 | 7 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
9 | 8 | imbi2d 341 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
10 | oveq2 7417 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵)) | |
11 | 10 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝐵) ∈ ℕ)) |
12 | 11 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ))) |
13 | peano2nn 12224 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
14 | peano2nn 12224 | . . . . . 6 ⊢ ((𝐴 + 𝑦) ∈ ℕ → ((𝐴 + 𝑦) + 1) ∈ ℕ) | |
15 | nncn 12220 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
16 | nncn 12220 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
17 | ax-1cn 11168 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
18 | addass 11197 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) | |
19 | 17, 18 | mp3an3 1451 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) |
20 | 15, 16, 19 | syl2an 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1))) |
21 | 20 | eleq1d 2819 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (((𝐴 + 𝑦) + 1) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
22 | 14, 21 | imbitrid 243 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)) |
23 | 22 | expcom 415 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
24 | 23 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))) |
25 | 3, 6, 9, 12, 13, 24 | nnind 12230 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ)) |
26 | 25 | impcom 409 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 ℕcn 12212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-1cn 11168 ax-addcl 11170 ax-addass 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 |
This theorem is referenced by: nnmulcl 12236 nnaddcld 12264 nnnn0addcl 12502 nn0addcl 12507 zaddcl 12602 9p1e10 12679 pythagtriplem4 16752 vdwapun 16907 vdwap1 16910 vdwlem2 16915 prmgaplem7 16990 prmgapprmolem 16994 mulgnndir 18983 uniioombllem3 25102 ballotlem1 33485 ballotlem2 33487 ballotlemfmpn 33493 ballotlem4 33497 ballotlemimin 33504 ballotlemsdom 33510 ballotlemsel1i 33511 ballotlemfrceq 33527 ballotlemfrcn0 33528 ballotlem1ri 33533 ballotth 33536 nndivsub 35342 nnadddir 41184 gbepos 46426 gbowpos 46427 nnsgrpmgm 46586 |
Copyright terms: Public domain | W3C validator |