MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcl Structured version   Visualization version   GIF version

Theorem nnaddcl 12287
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnaddcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑥 = 1 → (𝐴 + 𝑥) = (𝐴 + 1))
21eleq1d 2824 . . . 4 (𝑥 = 1 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
32imbi2d 340 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)))
4 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
54eleq1d 2824 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝑦) ∈ ℕ))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ)))
7 oveq2 7439 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 1)))
87eleq1d 2824 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
10 oveq2 7439 . . . . 5 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1110eleq1d 2824 . . . 4 (𝑥 = 𝐵 → ((𝐴 + 𝑥) ∈ ℕ ↔ (𝐴 + 𝐵) ∈ ℕ))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 + 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ)))
13 peano2nn 12276 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
14 peano2nn 12276 . . . . . 6 ((𝐴 + 𝑦) ∈ ℕ → ((𝐴 + 𝑦) + 1) ∈ ℕ)
15 nncn 12272 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
16 nncn 12272 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
17 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
18 addass 11240 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
1917, 18mp3an3 1449 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2015, 16, 19syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) + 1) = (𝐴 + (𝑦 + 1)))
2120eleq1d 2824 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (((𝐴 + 𝑦) + 1) ∈ ℕ ↔ (𝐴 + (𝑦 + 1)) ∈ ℕ))
2214, 21imbitrid 244 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ))
2322expcom 413 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 + 𝑦) ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
2423a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 + 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 + (𝑦 + 1)) ∈ ℕ)))
253, 6, 9, 12, 13, 24nnind 12282 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 + 𝐵) ∈ ℕ))
2625impcom 407 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-addcl 11213  ax-addass 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  nnmulcl  12288  nnaddcld  12316  nnnn0addcl  12554  nn0addcl  12559  zaddcl  12655  9p1e10  12733  pythagtriplem4  16853  vdwapun  17008  vdwap1  17011  vdwlem2  17016  prmgaplem7  17091  prmgapprmolem  17095  mulgnndir  19134  uniioombllem3  25634  ballotlem1  34468  ballotlem2  34470  ballotlemfmpn  34476  ballotlem4  34480  ballotlemimin  34487  ballotlemsdom  34493  ballotlemsel1i  34494  ballotlemfrceq  34510  ballotlemfrcn0  34511  ballotlem1ri  34516  ballotth  34519  nndivsub  36440  nnadddir  42284  gbepos  47683  gbowpos  47684  nnsgrpmgm  48020
  Copyright terms: Public domain W3C validator