MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Visualization version   GIF version

Theorem prmlem0 16211
Description: Lemma for prmlem1 16213 and prmlem2 16225. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
prmlem0.2 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
prmlem0.3 (𝐾 + 2) = 𝑀
Assertion
Ref Expression
prmlem0 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐾(𝑥)   𝑀(𝑥)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 3955 . . . . 5 (𝑥 ∈ (ℙ ∖ {2}) → 𝑥 ∈ ℙ)
2 prmlem0.2 . . . . . 6 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
3 eleq1 2847 . . . . . . 7 (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ))
4 breq1 4889 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
54notbid 310 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥𝑁 ↔ ¬ 𝐾𝑁))
63, 5imbi12d 336 . . . . . 6 (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾𝑁)))
72, 6mpbiri 250 . . . . 5 (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥𝑁))
81, 7syl5 34 . . . 4 (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
98adantrd 487 . . 3 (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109a1i 11 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
11 uzp1 12027 . . 3 (𝑥 ∈ (ℤ‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))))
12 eleq1 2847 . . . . . . . 8 (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
1312adantl 475 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
14 eldifsn 4550 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℙ ∖ {2}) ↔ ((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2))
15 eluzel2 11997 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
1615adantl 475 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
17 simpl 476 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝐾)
18 1z 11759 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
19 n2dvds1 15496 . . . . . . . . . . . . . . . . 17 ¬ 2 ∥ 1
20 opoe 15491 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1))
2118, 19, 20mpanr12 695 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → 2 ∥ (𝐾 + 1))
2216, 17, 21syl2anc 579 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∥ (𝐾 + 1))
2322adantr 474 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥ (𝐾 + 1))
24 2z 11761 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
25 uzid 12007 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∈ (ℤ‘2))
27 dvdsprm 15819 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2826, 27sylan 575 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2923, 28mpbid 224 . . . . . . . . . . . . 13 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1))
3029eqcomd 2784 . . . . . . . . . . . 12 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2)
3130a1d 25 . . . . . . . . . . 11 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥𝑁 → (𝐾 + 1) = 2))
3231necon3ad 2982 . . . . . . . . . 10 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥𝑁))
3332expimpd 447 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥𝑁))
3414, 33syl5bi 234 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3534adantr 474 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3613, 35sylbid 232 . . . . . 6 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3736adantrd 487 . . . . 5 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3837ex 403 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
3916zcnd 11835 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
40 ax-1cn 10330 . . . . . . . . . 10 1 ∈ ℂ
41 addass 10359 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4240, 40, 41mp3an23 1526 . . . . . . . . 9 (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4339, 42syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
44 1p1e2 11507 . . . . . . . . . 10 (1 + 1) = 2
4544oveq2i 6933 . . . . . . . . 9 (𝐾 + (1 + 1)) = (𝐾 + 2)
46 prmlem0.3 . . . . . . . . 9 (𝐾 + 2) = 𝑀
4745, 46eqtri 2802 . . . . . . . 8 (𝐾 + (1 + 1)) = 𝑀
4843, 47syl6eq 2830 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = 𝑀)
4948fveq2d 6450 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) + 1)) = (ℤ𝑀))
5049eleq2d 2845 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈ (ℤ𝑀)))
51 dvdsaddr 15432 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5224, 16, 51sylancr 581 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5346breq2i 4894 . . . . . . . 8 (2 ∥ (𝐾 + 2) ↔ 2 ∥ 𝑀)
5452, 53syl6bb 279 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀))
5517, 54mtbid 316 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝑀)
56 prmlem0.1 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
5756ex 403 . . . . . 6 (¬ 2 ∥ 𝑀 → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5855, 57syl 17 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5950, 58sylbid 232 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6038, 59jaod 848 . . 3 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6111, 60syl5 34 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
62 uzp1 12027 . . 3 (𝑥 ∈ (ℤ𝐾) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6362adantl 475 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6410, 61, 63mpjaod 849 1 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  cdif 3789  {csn 4398   class class class wbr 4886  cfv 6135  (class class class)co 6922  cc 10270  1c1 10273   + caddc 10275  cle 10412  2c2 11430  cz 11728  cuz 11992  cexp 13178  cdvds 15387  cprime 15790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-prm 15791
This theorem is referenced by:  prmlem1a  16212  prmlem2  16225
  Copyright terms: Public domain W3C validator