MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Visualization version   GIF version

Theorem prmlem0 17035
Description: Lemma for prmlem1 17037 and prmlem2 17049. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
prmlem0.2 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
prmlem0.3 (𝐾 + 2) = 𝑀
Assertion
Ref Expression
prmlem0 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐾(𝑥)   𝑀(𝑥)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 4084 . . . . 5 (𝑥 ∈ (ℙ ∖ {2}) → 𝑥 ∈ ℙ)
2 prmlem0.2 . . . . . 6 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
3 eleq1 2816 . . . . . . 7 (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ))
4 breq1 5098 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
54notbid 318 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥𝑁 ↔ ¬ 𝐾𝑁))
63, 5imbi12d 344 . . . . . 6 (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾𝑁)))
72, 6mpbiri 258 . . . . 5 (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥𝑁))
81, 7syl5 34 . . . 4 (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
98adantrd 491 . . 3 (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109a1i 11 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
11 uzp1 12794 . . 3 (𝑥 ∈ (ℤ‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))))
12 eleq1 2816 . . . . . . . 8 (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
1312adantl 481 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
14 eldifsn 4740 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℙ ∖ {2}) ↔ ((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2))
15 eluzel2 12758 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
1615adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
17 simpl 482 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝐾)
18 1z 12523 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
19 n2dvds1 16297 . . . . . . . . . . . . . . . . 17 ¬ 2 ∥ 1
20 opoe 16292 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1))
2118, 19, 20mpanr12 705 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → 2 ∥ (𝐾 + 1))
2216, 17, 21syl2anc 584 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∥ (𝐾 + 1))
2322adantr 480 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥ (𝐾 + 1))
24 2z 12525 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
25 uzid 12768 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∈ (ℤ‘2))
27 dvdsprm 16632 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2826, 27sylan 580 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2923, 28mpbid 232 . . . . . . . . . . . . 13 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1))
3029eqcomd 2735 . . . . . . . . . . . 12 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2)
3130a1d 25 . . . . . . . . . . 11 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥𝑁 → (𝐾 + 1) = 2))
3231necon3ad 2938 . . . . . . . . . 10 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥𝑁))
3332expimpd 453 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥𝑁))
3414, 33biimtrid 242 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3534adantr 480 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3613, 35sylbid 240 . . . . . 6 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3736adantrd 491 . . . . 5 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3837ex 412 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
3916zcnd 12599 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
40 ax-1cn 11086 . . . . . . . . . 10 1 ∈ ℂ
41 addass 11115 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4240, 40, 41mp3an23 1455 . . . . . . . . 9 (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4339, 42syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
44 1p1e2 12266 . . . . . . . . . 10 (1 + 1) = 2
4544oveq2i 7364 . . . . . . . . 9 (𝐾 + (1 + 1)) = (𝐾 + 2)
46 prmlem0.3 . . . . . . . . 9 (𝐾 + 2) = 𝑀
4745, 46eqtri 2752 . . . . . . . 8 (𝐾 + (1 + 1)) = 𝑀
4843, 47eqtrdi 2780 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = 𝑀)
4948fveq2d 6830 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) + 1)) = (ℤ𝑀))
5049eleq2d 2814 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈ (ℤ𝑀)))
51 dvdsaddr 16232 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5224, 16, 51sylancr 587 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5346breq2i 5103 . . . . . . . 8 (2 ∥ (𝐾 + 2) ↔ 2 ∥ 𝑀)
5452, 53bitrdi 287 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀))
5517, 54mtbid 324 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝑀)
56 prmlem0.1 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
5756ex 412 . . . . . 6 (¬ 2 ∥ 𝑀 → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5855, 57syl 17 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5950, 58sylbid 240 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6038, 59jaod 859 . . 3 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6111, 60syl5 34 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
62 uzp1 12794 . . 3 (𝑥 ∈ (ℤ𝐾) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6362adantl 481 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6410, 61, 63mpjaod 860 1 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031  cle 11169  2c2 12201  cz 12489  cuz 12753  cexp 13986  cdvds 16181  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601
This theorem is referenced by:  prmlem1a  17036  prmlem2  17049
  Copyright terms: Public domain W3C validator