Proof of Theorem prmlem0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eldifi 4131 | . . . . 5
⊢ (𝑥 ∈ (ℙ ∖ {2})
→ 𝑥 ∈
ℙ) | 
| 2 |  | prmlem0.2 | . . . . . 6
⊢ (𝐾 ∈ ℙ → ¬
𝐾 ∥ 𝑁) | 
| 3 |  | eleq1 2829 | . . . . . . 7
⊢ (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ)) | 
| 4 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑥 = 𝐾 → (𝑥 ∥ 𝑁 ↔ 𝐾 ∥ 𝑁)) | 
| 5 | 4 | notbid 318 | . . . . . . 7
⊢ (𝑥 = 𝐾 → (¬ 𝑥 ∥ 𝑁 ↔ ¬ 𝐾 ∥ 𝑁)) | 
| 6 | 3, 5 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁))) | 
| 7 | 2, 6 | mpbiri 258 | . . . . 5
⊢ (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥 ∥ 𝑁)) | 
| 8 | 1, 7 | syl5 34 | . . . 4
⊢ (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬
𝑥 ∥ 𝑁)) | 
| 9 | 8 | adantrd 491 | . . 3
⊢ (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | 
| 10 | 9 | a1i 11 | . 2
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 11 |  | uzp1 12919 | . . 3
⊢ (𝑥 ∈
(ℤ≥‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ≥‘((𝐾 + 1) + 1)))) | 
| 12 |  | eleq1 2829 | . . . . . . . 8
⊢ (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖
{2}))) | 
| 13 | 12 | adantl 481 | . . . . . . 7
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖
{2}))) | 
| 14 |  | eldifsn 4786 | . . . . . . . . 9
⊢ ((𝐾 + 1) ∈ (ℙ ∖
{2}) ↔ ((𝐾 + 1) ∈
ℙ ∧ (𝐾 + 1) ≠
2)) | 
| 15 |  | eluzel2 12883 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(ℤ≥‘𝐾) → 𝐾 ∈ ℤ) | 
| 16 | 15 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → 𝐾 ∈ ℤ) | 
| 17 |  | simpl 482 | . . . . . . . . . . . . . . . 16
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ¬ 2 ∥ 𝐾) | 
| 18 |  | 1z 12647 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ | 
| 19 |  | n2dvds1 16405 | . . . . . . . . . . . . . . . . 17
⊢  ¬ 2
∥ 1 | 
| 20 |  | opoe 16400 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℤ ∧ ¬ 2
∥ 𝐾) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1)) | 
| 21 | 18, 19, 20 | mpanr12 705 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℤ ∧ ¬ 2
∥ 𝐾) → 2 ∥
(𝐾 + 1)) | 
| 22 | 16, 17, 21 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → 2 ∥ (𝐾 + 1)) | 
| 23 | 22 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥
(𝐾 + 1)) | 
| 24 |  | 2z 12649 | . . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ | 
| 25 |  | uzid 12893 | . . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) | 
| 26 | 24, 25 | mp1i 13 | . . . . . . . . . . . . . . 15
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → 2 ∈
(ℤ≥‘2)) | 
| 27 |  | dvdsprm 16740 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥
(𝐾 + 1) ↔ 2 = (𝐾 + 1))) | 
| 28 | 26, 27 | sylan 580 | . . . . . . . . . . . . . 14
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥
(𝐾 + 1) ↔ 2 = (𝐾 + 1))) | 
| 29 | 23, 28 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1)) | 
| 30 | 29 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2) | 
| 31 | 30 | a1d 25 | . . . . . . . . . . 11
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥 ∥ 𝑁 → (𝐾 + 1) = 2)) | 
| 32 | 31 | necon3ad 2953 | . . . . . . . . . 10
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥 ∥ 𝑁)) | 
| 33 | 32 | expimpd 453 | . . . . . . . . 9
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥 ∥ 𝑁)) | 
| 34 | 14, 33 | biimtrid 242 | . . . . . . . 8
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) →
¬ 𝑥 ∥ 𝑁)) | 
| 35 | 34 | adantr 480 | . . . . . . 7
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) →
¬ 𝑥 ∥ 𝑁)) | 
| 36 | 13, 35 | sylbid 240 | . . . . . 6
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬
𝑥 ∥ 𝑁)) | 
| 37 | 36 | adantrd 491 | . . . . 5
⊢ (((¬
2 ∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | 
| 38 | 37 | ex 412 | . . . 4
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 39 | 16 | zcnd 12723 | . . . . . . . . 9
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → 𝐾 ∈ ℂ) | 
| 40 |  | ax-1cn 11213 | . . . . . . . . . 10
⊢ 1 ∈
ℂ | 
| 41 |  | addass 11242 | . . . . . . . . . 10
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1))) | 
| 42 | 40, 40, 41 | mp3an23 1455 | . . . . . . . . 9
⊢ (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1))) | 
| 43 | 39, 42 | syl 17 | . . . . . . . 8
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1))) | 
| 44 |  | 1p1e2 12391 | . . . . . . . . . 10
⊢ (1 + 1) =
2 | 
| 45 | 44 | oveq2i 7442 | . . . . . . . . 9
⊢ (𝐾 + (1 + 1)) = (𝐾 + 2) | 
| 46 |  | prmlem0.3 | . . . . . . . . 9
⊢ (𝐾 + 2) = 𝑀 | 
| 47 | 45, 46 | eqtri 2765 | . . . . . . . 8
⊢ (𝐾 + (1 + 1)) = 𝑀 | 
| 48 | 43, 47 | eqtrdi 2793 | . . . . . . 7
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ((𝐾 + 1) + 1) = 𝑀) | 
| 49 | 48 | fveq2d 6910 | . . . . . 6
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) →
(ℤ≥‘((𝐾 + 1) + 1)) =
(ℤ≥‘𝑀)) | 
| 50 | 49 | eleq2d 2827 | . . . . 5
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 ∈ (ℤ≥‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈
(ℤ≥‘𝑀))) | 
| 51 |  | dvdsaddr 16340 | . . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 𝐾
∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2))) | 
| 52 | 24, 16, 51 | sylancr 587 | . . . . . . . 8
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2))) | 
| 53 | 46 | breq2i 5151 | . . . . . . . 8
⊢ (2
∥ (𝐾 + 2) ↔ 2
∥ 𝑀) | 
| 54 | 52, 53 | bitrdi 287 | . . . . . . 7
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀)) | 
| 55 | 17, 54 | mtbid 324 | . . . . . 6
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ¬ 2 ∥ 𝑀) | 
| 56 |  | prmlem0.1 | . . . . . . 7
⊢ ((¬ 2
∥ 𝑀 ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | 
| 57 | 56 | ex 412 | . . . . . 6
⊢ (¬ 2
∥ 𝑀 → (𝑥 ∈
(ℤ≥‘𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 58 | 55, 57 | syl 17 | . . . . 5
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 ∈ (ℤ≥‘𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 59 | 50, 58 | sylbid 240 | . . . 4
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 ∈ (ℤ≥‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2})
∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 60 | 38, 59 | jaod 860 | . . 3
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ≥‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2})
∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 61 | 11, 60 | syl5 34 | . 2
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 ∈ (ℤ≥‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2})
∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁))) | 
| 62 |  | uzp1 12919 | . . 3
⊢ (𝑥 ∈
(ℤ≥‘𝐾) → (𝑥 = 𝐾 ∨ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) | 
| 63 | 62 | adantl 481 | . 2
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → (𝑥 = 𝐾 ∨ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) | 
| 64 | 10, 61, 63 | mpjaod 861 | 1
⊢ ((¬ 2
∥ 𝐾 ∧ 𝑥 ∈
(ℤ≥‘𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |