MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmlem0 Structured version   Visualization version   GIF version

Theorem prmlem0 16735
Description: Lemma for prmlem1 16737 and prmlem2 16749. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
prmlem0.1 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
prmlem0.2 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
prmlem0.3 (𝐾 + 2) = 𝑀
Assertion
Ref Expression
prmlem0 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐾(𝑥)   𝑀(𝑥)

Proof of Theorem prmlem0
StepHypRef Expression
1 eldifi 4057 . . . . 5 (𝑥 ∈ (ℙ ∖ {2}) → 𝑥 ∈ ℙ)
2 prmlem0.2 . . . . . 6 (𝐾 ∈ ℙ → ¬ 𝐾𝑁)
3 eleq1 2826 . . . . . . 7 (𝑥 = 𝐾 → (𝑥 ∈ ℙ ↔ 𝐾 ∈ ℙ))
4 breq1 5073 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
54notbid 317 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥𝑁 ↔ ¬ 𝐾𝑁))
63, 5imbi12d 344 . . . . . 6 (𝑥 = 𝐾 → ((𝑥 ∈ ℙ → ¬ 𝑥𝑁) ↔ (𝐾 ∈ ℙ → ¬ 𝐾𝑁)))
72, 6mpbiri 257 . . . . 5 (𝑥 = 𝐾 → (𝑥 ∈ ℙ → ¬ 𝑥𝑁))
81, 7syl5 34 . . . 4 (𝑥 = 𝐾 → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
98adantrd 491 . . 3 (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
109a1i 11 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾 → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
11 uzp1 12548 . . 3 (𝑥 ∈ (ℤ‘(𝐾 + 1)) → (𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))))
12 eleq1 2826 . . . . . . . 8 (𝑥 = (𝐾 + 1) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
1312adantl 481 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝐾 + 1) ∈ (ℙ ∖ {2})))
14 eldifsn 4717 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℙ ∖ {2}) ↔ ((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2))
15 eluzel2 12516 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
1615adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
17 simpl 482 . . . . . . . . . . . . . . . 16 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝐾)
18 1z 12280 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
19 n2dvds1 16005 . . . . . . . . . . . . . . . . 17 ¬ 2 ∥ 1
20 opoe 16000 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐾 + 1))
2118, 19, 20mpanr12 701 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → 2 ∥ (𝐾 + 1))
2216, 17, 21syl2anc 583 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∥ (𝐾 + 1))
2322adantr 480 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 ∥ (𝐾 + 1))
24 2z 12282 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
25 uzid 12526 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . 15 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 2 ∈ (ℤ‘2))
27 dvdsprm 16336 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2826, 27sylan 579 . . . . . . . . . . . . . 14 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (2 ∥ (𝐾 + 1) ↔ 2 = (𝐾 + 1)))
2923, 28mpbid 231 . . . . . . . . . . . . 13 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → 2 = (𝐾 + 1))
3029eqcomd 2744 . . . . . . . . . . . 12 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝐾 + 1) = 2)
3130a1d 25 . . . . . . . . . . 11 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → (𝑥𝑁 → (𝐾 + 1) = 2))
3231necon3ad 2955 . . . . . . . . . 10 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ (𝐾 + 1) ∈ ℙ) → ((𝐾 + 1) ≠ 2 → ¬ 𝑥𝑁))
3332expimpd 453 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (((𝐾 + 1) ∈ ℙ ∧ (𝐾 + 1) ≠ 2) → ¬ 𝑥𝑁))
3414, 33syl5bi 241 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3534adantr 480 . . . . . . 7 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝐾 + 1) ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3613, 35sylbid 239 . . . . . 6 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → (𝑥 ∈ (ℙ ∖ {2}) → ¬ 𝑥𝑁))
3736adantrd 491 . . . . 5 (((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) ∧ 𝑥 = (𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
3837ex 412 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = (𝐾 + 1) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
3916zcnd 12356 . . . . . . . . 9 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
40 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
41 addass 10889 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4240, 40, 41mp3an23 1451 . . . . . . . . 9 (𝐾 ∈ ℂ → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
4339, 42syl 17 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = (𝐾 + (1 + 1)))
44 1p1e2 12028 . . . . . . . . . 10 (1 + 1) = 2
4544oveq2i 7266 . . . . . . . . 9 (𝐾 + (1 + 1)) = (𝐾 + 2)
46 prmlem0.3 . . . . . . . . 9 (𝐾 + 2) = 𝑀
4745, 46eqtri 2766 . . . . . . . 8 (𝐾 + (1 + 1)) = 𝑀
4843, 47eqtrdi 2795 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝐾 + 1) + 1) = 𝑀)
4948fveq2d 6760 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) + 1)) = (ℤ𝑀))
5049eleq2d 2824 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) ↔ 𝑥 ∈ (ℤ𝑀)))
51 dvdsaddr 15940 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5224, 16, 51sylancr 586 . . . . . . . 8 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ (𝐾 + 2)))
5346breq2i 5078 . . . . . . . 8 (2 ∥ (𝐾 + 2) ↔ 2 ∥ 𝑀)
5452, 53bitrdi 286 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (2 ∥ 𝐾 ↔ 2 ∥ 𝑀))
5517, 54mtbid 323 . . . . . 6 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ¬ 2 ∥ 𝑀)
56 prmlem0.1 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑥 ∈ (ℤ𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
5756ex 412 . . . . . 6 (¬ 2 ∥ 𝑀 → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5855, 57syl 17 . . . . 5 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
5950, 58sylbid 239 . . . 4 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘((𝐾 + 1) + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6038, 59jaod 855 . . 3 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 = (𝐾 + 1) ∨ 𝑥 ∈ (ℤ‘((𝐾 + 1) + 1))) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
6111, 60syl5 34 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁)))
62 uzp1 12548 . . 3 (𝑥 ∈ (ℤ𝐾) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6362adantl 481 . 2 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → (𝑥 = 𝐾𝑥 ∈ (ℤ‘(𝐾 + 1))))
6410, 61, 63mpjaod 856 1 ((¬ 2 ∥ 𝐾𝑥 ∈ (ℤ𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805  cle 10941  2c2 11958  cz 12249  cuz 12511  cexp 13710  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305
This theorem is referenced by:  prmlem1a  16736  prmlem2  16749
  Copyright terms: Public domain W3C validator