MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsplit Structured version   Visualization version   GIF version

Theorem isumsplit 15725
Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (ℤ𝑀)
isumsplit.2 𝑊 = (ℤ𝑁)
isumsplit.3 (𝜑𝑁𝑍)
isumsplit.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsplit.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumsplit.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝑘,𝑁   𝑘,𝑊
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumsplit
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (ℤ𝑀)
2 isumsplit.3 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2848 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12768 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . 2 (𝜑𝑀 ∈ ℤ)
6 isumsplit.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7 isumsplit.5 . 2 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
8 isumsplit.2 . . 3 𝑊 = (ℤ𝑁)
9 eluzelz 12773 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
103, 9syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
11 uzss 12786 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
123, 11syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
1312, 8, 13sstr4g 3989 . . . . . 6 (𝜑𝑊𝑍)
1413sselda 3944 . . . . 5 ((𝜑𝑘𝑊) → 𝑘𝑍)
1514, 6syldan 591 . . . 4 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
1614, 7syldan 591 . . . 4 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
17 isumsplit.6 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2838 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191, 2, 18iserex 15541 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 231 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 15643 . . 3 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
22 fzfid 13878 . . . 4 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
23 elfzuz 13437 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2423, 1eleqtrrdi 2849 . . . . 5 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
2524, 7sylan2 593 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
2622, 25fsumcl 15618 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
2714, 18syldan 591 . . . . 5 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
288, 10, 27serf 13936 . . . 4 (𝜑 → seq𝑁( + , 𝐹):𝑊⟶ℂ)
2928ffvelcdmda 7035 . . 3 ((𝜑𝑗𝑊) → (seq𝑁( + , 𝐹)‘𝑗) ∈ ℂ)
305zred 12607 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
3130ltm1d 12087 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
32 peano2zm 12546 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
33 fzn 13457 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
345, 32, 33syl2anc2 585 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3531, 34mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3635sumeq1d 15586 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
3736adantr 481 . . . . . . . 8 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
38 sum0 15606 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐴 = 0
3937, 38eqtrdi 2792 . . . . . . 7 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = 0)
4039oveq1d 7372 . . . . . 6 ((𝜑𝑗𝑊) → (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)) = (0 + (seq𝑀( + , 𝐹)‘𝑗)))
4113sselda 3944 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑗𝑍)
421, 5, 18serf 13936 . . . . . . . . 9 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
4342ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4441, 43syldan 591 . . . . . . 7 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4544addid2d 11356 . . . . . 6 ((𝜑𝑗𝑊) → (0 + (seq𝑀( + , 𝐹)‘𝑗)) = (seq𝑀( + , 𝐹)‘𝑗))
4640, 45eqtr2d 2777 . . . . 5 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
47 oveq1 7364 . . . . . . . . 9 (𝑁 = 𝑀 → (𝑁 − 1) = (𝑀 − 1))
4847oveq2d 7373 . . . . . . . 8 (𝑁 = 𝑀 → (𝑀...(𝑁 − 1)) = (𝑀...(𝑀 − 1)))
4948sumeq1d 15586 . . . . . . 7 (𝑁 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴)
50 seqeq1 13909 . . . . . . . 8 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5150fveq1d 6844 . . . . . . 7 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
5249, 51oveq12d 7375 . . . . . 6 (𝑁 = 𝑀 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
5352eqeq2d 2747 . . . . 5 (𝑁 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) ↔ (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗))))
5446, 53syl5ibrcom 246 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
55 addcl 11133 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
5655adantl 482 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
57 addass 11138 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
5857adantl 482 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
59 simplr 767 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗𝑊)
60 simpll 765 . . . . . . . . . . 11 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
6110zcnd 12608 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
62 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
63 npcan 11410 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6461, 62, 63sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6564eqcomd 2742 . . . . . . . . . . 11 (𝜑𝑁 = ((𝑁 − 1) + 1))
6660, 65syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6846 . . . . . . . . 9 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (ℤ𝑁) = (ℤ‘((𝑁 − 1) + 1)))
688, 67eqtrid 2788 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑊 = (ℤ‘((𝑁 − 1) + 1)))
6959, 68eleqtrd 2840 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ (ℤ‘((𝑁 − 1) + 1)))
705adantr 481 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑀 ∈ ℤ)
71 eluzp1m1 12789 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
7270, 71sylan 580 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
73 elfzuz 13437 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
7473, 1eleqtrrdi 2849 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
7560, 74, 18syl2an 596 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
7656, 58, 69, 72, 75seqsplit 13941 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
7760, 24, 6syl2an 596 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) = 𝐴)
7860, 24, 7syl2an 596 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
7977, 72, 78fsumser 15615 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (seq𝑀( + , 𝐹)‘(𝑁 − 1)))
8066seqeq1d 13912 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
8180fveq1d 6844 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑁( + , 𝐹)‘𝑗) = (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗))
8279, 81oveq12d 7375 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8376, 82eqtr4d 2779 . . . . 5 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
8483ex 413 . . . 4 ((𝜑𝑗𝑊) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
85 uzp1 12804 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
863, 85syl 17 . . . . 5 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8786adantr 481 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8854, 84, 87mpjaod 858 . . 3 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
898, 10, 21, 26, 17, 29, 88climaddc2 15518 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
901, 5, 6, 7, 89isumclim 15642 1 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wss 3910  c0 4282   class class class wbr 5105  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cli 15366  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  isum1p  15726  geolim2  15756  mertenslem2  15770  mertens  15771  effsumlt  15993  eirrlem  16086  rpnnen2lem8  16103  prmreclem6  16793  aaliou3lem7  25709  abelthlem7  25797  log2tlbnd  26295  subfaclim  33782  knoppndvlem6  34980  binomcxplemnn0  42619  stirlinglem12  44316
  Copyright terms: Public domain W3C validator