MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsplit Structured version   Visualization version   GIF version

Theorem isumsplit 15186
Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (ℤ𝑀)
isumsplit.2 𝑊 = (ℤ𝑁)
isumsplit.3 (𝜑𝑁𝑍)
isumsplit.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsplit.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumsplit.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝑘,𝑁   𝑘,𝑊
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumsplit
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (ℤ𝑀)
2 isumsplit.3 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2924 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12236 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . 2 (𝜑𝑀 ∈ ℤ)
6 isumsplit.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7 isumsplit.5 . 2 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
8 isumsplit.2 . . 3 𝑊 = (ℤ𝑁)
9 eluzelz 12241 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
103, 9syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
11 uzss 12253 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
123, 11syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
1312, 8, 13sstr4g 3987 . . . . . 6 (𝜑𝑊𝑍)
1413sselda 3942 . . . . 5 ((𝜑𝑘𝑊) → 𝑘𝑍)
1514, 6syldan 594 . . . 4 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
1614, 7syldan 594 . . . 4 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
17 isumsplit.6 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2914 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191, 2, 18iserex 15004 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 235 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 15104 . . 3 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
22 fzfid 13336 . . . 4 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
23 elfzuz 12898 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2423, 1eleqtrrdi 2925 . . . . 5 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
2524, 7sylan2 595 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
2622, 25fsumcl 15081 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
2714, 18syldan 594 . . . . 5 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
288, 10, 27serf 13394 . . . 4 (𝜑 → seq𝑁( + , 𝐹):𝑊⟶ℂ)
2928ffvelrnda 6833 . . 3 ((𝜑𝑗𝑊) → (seq𝑁( + , 𝐹)‘𝑗) ∈ ℂ)
305zred 12075 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
3130ltm1d 11561 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
32 peano2zm 12013 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
33 fzn 12918 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
345, 32, 33syl2anc2 588 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3531, 34mpbid 235 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3635sumeq1d 15049 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
3736adantr 484 . . . . . . . 8 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
38 sum0 15069 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐴 = 0
3937, 38syl6eq 2873 . . . . . . 7 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = 0)
4039oveq1d 7155 . . . . . 6 ((𝜑𝑗𝑊) → (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)) = (0 + (seq𝑀( + , 𝐹)‘𝑗)))
4113sselda 3942 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑗𝑍)
421, 5, 18serf 13394 . . . . . . . . 9 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
4342ffvelrnda 6833 . . . . . . . 8 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4441, 43syldan 594 . . . . . . 7 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4544addid2d 10830 . . . . . 6 ((𝜑𝑗𝑊) → (0 + (seq𝑀( + , 𝐹)‘𝑗)) = (seq𝑀( + , 𝐹)‘𝑗))
4640, 45eqtr2d 2858 . . . . 5 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
47 oveq1 7147 . . . . . . . . 9 (𝑁 = 𝑀 → (𝑁 − 1) = (𝑀 − 1))
4847oveq2d 7156 . . . . . . . 8 (𝑁 = 𝑀 → (𝑀...(𝑁 − 1)) = (𝑀...(𝑀 − 1)))
4948sumeq1d 15049 . . . . . . 7 (𝑁 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴)
50 seqeq1 13367 . . . . . . . 8 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5150fveq1d 6654 . . . . . . 7 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
5249, 51oveq12d 7158 . . . . . 6 (𝑁 = 𝑀 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
5352eqeq2d 2833 . . . . 5 (𝑁 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) ↔ (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗))))
5446, 53syl5ibrcom 250 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
55 addcl 10608 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
5655adantl 485 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
57 addass 10613 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
5857adantl 485 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
59 simplr 768 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗𝑊)
60 simpll 766 . . . . . . . . . . 11 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
6110zcnd 12076 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
62 ax-1cn 10584 . . . . . . . . . . . . 13 1 ∈ ℂ
63 npcan 10884 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6461, 62, 63sylancl 589 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6564eqcomd 2828 . . . . . . . . . . 11 (𝜑𝑁 = ((𝑁 − 1) + 1))
6660, 65syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6656 . . . . . . . . 9 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (ℤ𝑁) = (ℤ‘((𝑁 − 1) + 1)))
688, 67syl5eq 2869 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑊 = (ℤ‘((𝑁 − 1) + 1)))
6959, 68eleqtrd 2916 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ (ℤ‘((𝑁 − 1) + 1)))
705adantr 484 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑀 ∈ ℤ)
71 eluzp1m1 12256 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
7270, 71sylan 583 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
73 elfzuz 12898 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
7473, 1eleqtrrdi 2925 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
7560, 74, 18syl2an 598 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
7656, 58, 69, 72, 75seqsplit 13399 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
7760, 24, 6syl2an 598 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) = 𝐴)
7860, 24, 7syl2an 598 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
7977, 72, 78fsumser 15078 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (seq𝑀( + , 𝐹)‘(𝑁 − 1)))
8066seqeq1d 13370 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
8180fveq1d 6654 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑁( + , 𝐹)‘𝑗) = (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗))
8279, 81oveq12d 7158 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8376, 82eqtr4d 2860 . . . . 5 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
8483ex 416 . . . 4 ((𝜑𝑗𝑊) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
85 uzp1 12267 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
863, 85syl 17 . . . . 5 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8786adantr 484 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
8854, 84, 87mpjaod 857 . . 3 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
898, 10, 21, 26, 17, 29, 88climaddc2 14983 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
901, 5, 6, 7, 89isumclim 15103 1 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  wss 3908  c0 4265   class class class wbr 5042  dom cdm 5532  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cmin 10859  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14832  Σcsu 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034
This theorem is referenced by:  isum1p  15187  geolim2  15218  mertenslem2  15232  mertens  15233  effsumlt  15455  eirrlem  15548  rpnnen2lem8  15565  prmreclem6  16246  aaliou3lem7  24943  abelthlem7  25031  log2tlbnd  25529  subfaclim  32509  knoppndvlem6  33930  binomcxplemnn0  40987  stirlinglem12  42666
  Copyright terms: Public domain W3C validator