MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem3 Structured version   Visualization version   GIF version

Theorem summolem3 15687
Description: Lemma for summo 15690. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
summolem3.4 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
summolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
summolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
summolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
summolem3 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑓,𝑘,𝑛,𝐴   𝑓,𝐹,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝐵,𝑓,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑘)   𝐺(𝑓)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summolem3
Dummy variables 𝑖 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 11157 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ)
3 addcom 11367 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
43adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
5 addass 11162 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
65adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
7 summolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 494 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 12843 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2839 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 ssidd 3973 . . 3 (𝜑 → ℂ ⊆ ℂ)
12 summolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
13 f1ocnv 6815 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1412, 13syl 17 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
15 summolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
16 f1oco 6826 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1714, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
18 ovex 7423 . . . . . . . . . 10 (1...𝑁) ∈ V
1918f1oen 8947 . . . . . . . . 9 ((𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀) → (1...𝑁) ≈ (1...𝑀))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (1...𝑁) ≈ (1...𝑀))
21 fzfi 13944 . . . . . . . . 9 (1...𝑁) ∈ Fin
22 fzfi 13944 . . . . . . . . 9 (1...𝑀) ∈ Fin
23 hashen 14319 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀)))
2421, 22, 23mp2an 692 . . . . . . . 8 ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀))
2520, 24sylibr 234 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = (♯‘(1...𝑀)))
267simprd 495 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
27 nnnn0 12456 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 hashfz1 14318 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2926, 27, 283syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
30 nnnn0 12456 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
31 hashfz1 14318 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
328, 30, 313syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3325, 29, 323eqtr3rd 2774 . . . . . 6 (𝜑𝑀 = 𝑁)
3433oveq2d 7406 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
3534f1oeq2d 6799 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3617, 35mpbird 257 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
37 summo.3 . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
38 fveq2 6861 . . . . . 6 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
3938csbeq1d 3869 . . . . 5 (𝑛 = 𝑚(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
40 elfznn 13521 . . . . . 6 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℕ)
4140adantl 481 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
42 f1of 6803 . . . . . . . 8 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
4312, 42syl 17 . . . . . . 7 (𝜑𝑓:(1...𝑀)⟶𝐴)
4443ffvelcdmda 7059 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
45 summo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4645ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4746adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
48 nfcsb1v 3889 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵
4948nfel1 2909 . . . . . . 7 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
50 csbeq1a 3879 . . . . . . . 8 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
5150eleq1d 2814 . . . . . . 7 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5249, 51rspc 3579 . . . . . 6 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5344, 47, 52sylc 65 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
5437, 39, 41, 53fvmptd3 6994 . . . 4 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5554, 53eqeltrd 2829 . . 3 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
5634f1oeq2d 6799 . . . . . . . . . . 11 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
5715, 56mpbird 257 . . . . . . . . . 10 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
58 f1of 6803 . . . . . . . . . 10 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
5957, 58syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)⟶𝐴)
60 fvco3 6963 . . . . . . . . 9 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6159, 60sylan 580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6261fveq2d 6865 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
6312adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
6459ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
65 f1ocnvfv2 7255 . . . . . . . 8 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6663, 64, 65syl2anc 584 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6762, 66eqtr2d 2766 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) = (𝑓‘((𝑓𝐾)‘𝑖)))
6867csbeq1d 3869 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
6968fveq2d 6865 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → ( I ‘(𝐾𝑖) / 𝑘𝐵) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
70 elfznn 13521 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
7170adantl 481 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
72 fveq2 6861 . . . . . . 7 (𝑛 = 𝑖 → (𝐾𝑛) = (𝐾𝑖))
7372csbeq1d 3869 . . . . . 6 (𝑛 = 𝑖(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
74 summolem3.4 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
7573, 74fvmpti 6970 . . . . 5 (𝑖 ∈ ℕ → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
7671, 75syl 17 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
77 f1of 6803 . . . . . . 7 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7836, 77syl 17 . . . . . 6 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7978ffvelcdmda 7059 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
80 elfznn 13521 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
81 fveq2 6861 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) = (𝑓‘((𝑓𝐾)‘𝑖)))
8281csbeq1d 3869 . . . . . 6 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
8382, 37fvmpti 6970 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ ℕ → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8479, 80, 833syl 18 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8569, 76, 843eqtr4d 2775 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
862, 4, 6, 10, 11, 36, 55, 85seqf1o 14015 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀))
8733fveq2d 6865 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
8886, 87eqtr3d 2767 1 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  csb 3865  ifcif 4491   class class class wbr 5110  cmpt 5191   I cid 5535  ccnv 5640  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303
This theorem is referenced by:  summolem2a  15688  summo  15690
  Copyright terms: Public domain W3C validator