MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem3 Structured version   Visualization version   GIF version

Theorem summolem3 15354
Description: Lemma for summo 15357. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
summolem3.4 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
summolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
summolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
summolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
summolem3 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑓,𝑘,𝑛,𝐴   𝑓,𝐹,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝐵,𝑓,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑘)   𝐺(𝑓)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summolem3
Dummy variables 𝑖 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 10884 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ)
3 addcom 11091 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
43adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
5 addass 10889 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
65adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
7 summolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 494 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 12550 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2849 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 ssidd 3940 . . 3 (𝜑 → ℂ ⊆ ℂ)
12 summolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
13 f1ocnv 6712 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1412, 13syl 17 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
15 summolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
16 f1oco 6722 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1714, 15, 16syl2anc 583 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
18 ovex 7288 . . . . . . . . . 10 (1...𝑁) ∈ V
1918f1oen 8716 . . . . . . . . 9 ((𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀) → (1...𝑁) ≈ (1...𝑀))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (1...𝑁) ≈ (1...𝑀))
21 fzfi 13620 . . . . . . . . 9 (1...𝑁) ∈ Fin
22 fzfi 13620 . . . . . . . . 9 (1...𝑀) ∈ Fin
23 hashen 13989 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀)))
2421, 22, 23mp2an 688 . . . . . . . 8 ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀))
2520, 24sylibr 233 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = (♯‘(1...𝑀)))
267simprd 495 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
27 nnnn0 12170 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 hashfz1 13988 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2926, 27, 283syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
30 nnnn0 12170 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
31 hashfz1 13988 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
328, 30, 313syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3325, 29, 323eqtr3rd 2787 . . . . . 6 (𝜑𝑀 = 𝑁)
3433oveq2d 7271 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
3534f1oeq2d 6696 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3617, 35mpbird 256 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
37 summo.3 . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
38 fveq2 6756 . . . . . 6 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
3938csbeq1d 3832 . . . . 5 (𝑛 = 𝑚(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
40 elfznn 13214 . . . . . 6 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℕ)
4140adantl 481 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
42 f1of 6700 . . . . . . . 8 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
4312, 42syl 17 . . . . . . 7 (𝜑𝑓:(1...𝑀)⟶𝐴)
4443ffvelrnda 6943 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
45 summo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4645ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4746adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
48 nfcsb1v 3853 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵
4948nfel1 2922 . . . . . . 7 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
50 csbeq1a 3842 . . . . . . . 8 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
5150eleq1d 2823 . . . . . . 7 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5249, 51rspc 3539 . . . . . 6 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5344, 47, 52sylc 65 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
5437, 39, 41, 53fvmptd3 6880 . . . 4 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5554, 53eqeltrd 2839 . . 3 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
5634f1oeq2d 6696 . . . . . . . . . . 11 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
5715, 56mpbird 256 . . . . . . . . . 10 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
58 f1of 6700 . . . . . . . . . 10 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
5957, 58syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)⟶𝐴)
60 fvco3 6849 . . . . . . . . 9 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6159, 60sylan 579 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6261fveq2d 6760 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
6312adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
6459ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
65 f1ocnvfv2 7130 . . . . . . . 8 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6663, 64, 65syl2anc 583 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6762, 66eqtr2d 2779 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) = (𝑓‘((𝑓𝐾)‘𝑖)))
6867csbeq1d 3832 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
6968fveq2d 6760 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → ( I ‘(𝐾𝑖) / 𝑘𝐵) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
70 elfznn 13214 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
7170adantl 481 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
72 fveq2 6756 . . . . . . 7 (𝑛 = 𝑖 → (𝐾𝑛) = (𝐾𝑖))
7372csbeq1d 3832 . . . . . 6 (𝑛 = 𝑖(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
74 summolem3.4 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
7573, 74fvmpti 6856 . . . . 5 (𝑖 ∈ ℕ → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
7671, 75syl 17 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
77 f1of 6700 . . . . . . 7 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7836, 77syl 17 . . . . . 6 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7978ffvelrnda 6943 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
80 elfznn 13214 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
81 fveq2 6756 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) = (𝑓‘((𝑓𝐾)‘𝑖)))
8281csbeq1d 3832 . . . . . 6 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
8382, 37fvmpti 6856 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ ℕ → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8479, 80, 833syl 18 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8569, 76, 843eqtr4d 2788 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
862, 4, 6, 10, 11, 36, 55, 85seqf1o 13692 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀))
8733fveq2d 6760 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
8886, 87eqtr3d 2780 1 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  csb 3828  ifcif 4456   class class class wbr 5070  cmpt 5153   I cid 5479  ccnv 5579  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cen 8688  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973
This theorem is referenced by:  summolem2a  15355  summo  15357
  Copyright terms: Public domain W3C validator