MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem3 Structured version   Visualization version   GIF version

Theorem summolem3 15623
Description: Lemma for summo 15626. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
summolem3.4 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
summolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
summolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
summolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
summolem3 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑓,𝑘,𝑛,𝐴   𝑓,𝐹,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝐵,𝑓,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑘)   𝐺(𝑓)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summolem3
Dummy variables 𝑖 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 11095 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ)
3 addcom 11306 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
43adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
5 addass 11100 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
65adantl 481 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
7 summolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 494 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 12777 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2843 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 ssidd 3954 . . 3 (𝜑 → ℂ ⊆ ℂ)
12 summolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
13 f1ocnv 6780 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1412, 13syl 17 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
15 summolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
16 f1oco 6791 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1714, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
18 ovex 7385 . . . . . . . . . 10 (1...𝑁) ∈ V
1918f1oen 8901 . . . . . . . . 9 ((𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀) → (1...𝑁) ≈ (1...𝑀))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (1...𝑁) ≈ (1...𝑀))
21 fzfi 13881 . . . . . . . . 9 (1...𝑁) ∈ Fin
22 fzfi 13881 . . . . . . . . 9 (1...𝑀) ∈ Fin
23 hashen 14256 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀)))
2421, 22, 23mp2an 692 . . . . . . . 8 ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀))
2520, 24sylibr 234 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = (♯‘(1...𝑀)))
267simprd 495 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
27 nnnn0 12395 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 hashfz1 14255 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2926, 27, 283syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
30 nnnn0 12395 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
31 hashfz1 14255 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
328, 30, 313syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3325, 29, 323eqtr3rd 2777 . . . . . 6 (𝜑𝑀 = 𝑁)
3433oveq2d 7368 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
3534f1oeq2d 6764 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3617, 35mpbird 257 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
37 summo.3 . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
38 fveq2 6828 . . . . . 6 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
3938csbeq1d 3850 . . . . 5 (𝑛 = 𝑚(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
40 elfznn 13455 . . . . . 6 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℕ)
4140adantl 481 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
42 f1of 6768 . . . . . . . 8 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
4312, 42syl 17 . . . . . . 7 (𝜑𝑓:(1...𝑀)⟶𝐴)
4443ffvelcdmda 7023 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
45 summo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4645ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4746adantr 480 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
48 nfcsb1v 3870 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵
4948nfel1 2912 . . . . . . 7 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
50 csbeq1a 3860 . . . . . . . 8 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
5150eleq1d 2818 . . . . . . 7 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5249, 51rspc 3561 . . . . . 6 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5344, 47, 52sylc 65 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
5437, 39, 41, 53fvmptd3 6958 . . . 4 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5554, 53eqeltrd 2833 . . 3 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
5634f1oeq2d 6764 . . . . . . . . . . 11 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
5715, 56mpbird 257 . . . . . . . . . 10 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
58 f1of 6768 . . . . . . . . . 10 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
5957, 58syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)⟶𝐴)
60 fvco3 6927 . . . . . . . . 9 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6159, 60sylan 580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6261fveq2d 6832 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
6312adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
6459ffvelcdmda 7023 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
65 f1ocnvfv2 7217 . . . . . . . 8 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6663, 64, 65syl2anc 584 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6762, 66eqtr2d 2769 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) = (𝑓‘((𝑓𝐾)‘𝑖)))
6867csbeq1d 3850 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
6968fveq2d 6832 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → ( I ‘(𝐾𝑖) / 𝑘𝐵) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
70 elfznn 13455 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
7170adantl 481 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
72 fveq2 6828 . . . . . . 7 (𝑛 = 𝑖 → (𝐾𝑛) = (𝐾𝑖))
7372csbeq1d 3850 . . . . . 6 (𝑛 = 𝑖(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
74 summolem3.4 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
7573, 74fvmpti 6934 . . . . 5 (𝑖 ∈ ℕ → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
7671, 75syl 17 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
77 f1of 6768 . . . . . . 7 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7836, 77syl 17 . . . . . 6 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7978ffvelcdmda 7023 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
80 elfznn 13455 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
81 fveq2 6828 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) = (𝑓‘((𝑓𝐾)‘𝑖)))
8281csbeq1d 3850 . . . . . 6 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
8382, 37fvmpti 6934 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ ℕ → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8479, 80, 833syl 18 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8569, 76, 843eqtr4d 2778 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
862, 4, 6, 10, 11, 36, 55, 85seqf1o 13952 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀))
8733fveq2d 6832 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
8886, 87eqtr3d 2770 1 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  csb 3846  ifcif 4474   class class class wbr 5093  cmpt 5174   I cid 5513  ccnv 5618  ccom 5623  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cen 8872  Fincfn 8875  cc 11011  0cc0 11013  1c1 11014   + caddc 11016  cn 12132  0cn0 12388  cz 12475  cuz 12738  ...cfz 13409  seqcseq 13910  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240
This theorem is referenced by:  summolem2a  15624  summo  15626
  Copyright terms: Public domain W3C validator