| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > facp2 | Structured version Visualization version GIF version | ||
| Description: The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.) |
| Ref | Expression |
|---|---|
| facp2 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn 12516 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 2 | ax-1cn 11192 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 3 | addass 11221 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) | |
| 4 | 2, 2, 3 | mp3an23 1455 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 6 | df-2 12308 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
| 7 | 6 | oveq2i 7421 | . . . . . . . . 9 ⊢ (𝑁 + 2) = (𝑁 + (1 + 1)) |
| 8 | 7 | eqcomi 2745 | . . . . . . . 8 ⊢ (𝑁 + (1 + 1)) = (𝑁 + 2) |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
| 10 | 5, 9 | eqtrd 2771 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| 11 | 10 | fveq2d 6885 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = (!‘(𝑁 + 2))) |
| 12 | peano2nn0 12546 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 13 | facp1 14301 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
| 15 | 11, 14 | eqtr3d 2773 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
| 16 | 10 | oveq2d 7426 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
| 17 | 15, 16 | eqtrd 2771 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
| 18 | facp1 14301 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | |
| 19 | 18 | oveq1d 7425 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · (𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
| 20 | 17, 19 | eqtrd 2771 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
| 21 | faccl 14306 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
| 22 | nncn 12253 | . . . 4 ⊢ ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
| 24 | nn0cn 12516 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) | |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) |
| 26 | 2cn 12320 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 27 | addcl 11216 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + 2) ∈ ℂ) | |
| 28 | 26, 27 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 + 2) ∈ ℂ) |
| 29 | 1, 28 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℂ) |
| 30 | mulass 11222 | . . 3 ⊢ (((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (𝑁 + 2) ∈ ℂ) → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) | |
| 31 | 23, 25, 29, 30 | syl3anc 1373 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
| 32 | 20, 31 | eqtrd 2771 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 ℕcn 12245 2c2 12300 ℕ0cn0 12506 !cfa 14296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-fac 14297 |
| This theorem is referenced by: 2np3bcnp1 42162 |
| Copyright terms: Public domain | W3C validator |