Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  facp2 Structured version   Visualization version   GIF version

Theorem facp2 42145
Description: The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.)
Assertion
Ref Expression
facp2 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))

Proof of Theorem facp2
StepHypRef Expression
1 nn0cn 12538 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 ax-1cn 11214 . . . . . . . . 9 1 ∈ ℂ
3 addass 11243 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
42, 2, 3mp3an23 1454 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
51, 4syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
6 df-2 12330 . . . . . . . . . 10 2 = (1 + 1)
76oveq2i 7443 . . . . . . . . 9 (𝑁 + 2) = (𝑁 + (1 + 1))
87eqcomi 2745 . . . . . . . 8 (𝑁 + (1 + 1)) = (𝑁 + 2)
98a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
105, 9eqtrd 2776 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
1110fveq2d 6909 . . . . 5 (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = (!‘(𝑁 + 2)))
12 peano2nn0 12568 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
13 facp1 14318 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)))
1412, 13syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)))
1511, 14eqtr3d 2778 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)))
1610oveq2d 7448 . . . 4 (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · (𝑁 + 2)))
1715, 16eqtrd 2776 . . 3 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · (𝑁 + 2)))
18 facp1 14318 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1918oveq1d 7447 . . 3 (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · (𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)))
2017, 19eqtrd 2776 . 2 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)))
21 faccl 14323 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
22 nncn 12275 . . . 4 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ)
2321, 22syl 17 . . 3 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
24 nn0cn 12538 . . . 4 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
2512, 24syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
26 2cn 12342 . . . . 5 2 ∈ ℂ
27 addcl 11238 . . . . 5 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + 2) ∈ ℂ)
2826, 27mpan2 691 . . . 4 (𝑁 ∈ ℂ → (𝑁 + 2) ∈ ℂ)
291, 28syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℂ)
30 mulass 11244 . . 3 (((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (𝑁 + 2) ∈ ℂ) → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
3123, 25, 29, 30syl3anc 1372 . 2 (𝑁 ∈ ℕ0 → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
3220, 31eqtrd 2776 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cc 11154  1c1 11157   + caddc 11159   · cmul 11161  cn 12267  2c2 12322  0cn0 12528  !cfa 14313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-fac 14314
This theorem is referenced by:  2np3bcnp1  42146
  Copyright terms: Public domain W3C validator