Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > facp2 | Structured version Visualization version GIF version |
Description: The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.) |
Ref | Expression |
---|---|
facp2 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12100 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | ax-1cn 10787 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
3 | addass 10816 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) | |
4 | 2, 2, 3 | mp3an23 1455 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
6 | df-2 11893 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
7 | 6 | oveq2i 7224 | . . . . . . . . 9 ⊢ (𝑁 + 2) = (𝑁 + (1 + 1)) |
8 | 7 | eqcomi 2746 | . . . . . . . 8 ⊢ (𝑁 + (1 + 1)) = (𝑁 + 2) |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
10 | 5, 9 | eqtrd 2777 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
11 | 10 | fveq2d 6721 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = (!‘(𝑁 + 2))) |
12 | peano2nn0 12130 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
13 | facp1 13844 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
15 | 11, 14 | eqtr3d 2779 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
16 | 10 | oveq2d 7229 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
17 | 15, 16 | eqtrd 2777 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
18 | facp1 13844 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | |
19 | 18 | oveq1d 7228 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · (𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
20 | 17, 19 | eqtrd 2777 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
21 | faccl 13849 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
22 | nncn 11838 | . . . 4 ⊢ ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
24 | nn0cn 12100 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) | |
25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) |
26 | 2cn 11905 | . . . . 5 ⊢ 2 ∈ ℂ | |
27 | addcl 10811 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + 2) ∈ ℂ) | |
28 | 26, 27 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 + 2) ∈ ℂ) |
29 | 1, 28 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℂ) |
30 | mulass 10817 | . . 3 ⊢ (((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (𝑁 + 2) ∈ ℂ) → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) | |
31 | 23, 25, 29, 30 | syl3anc 1373 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
32 | 20, 31 | eqtrd 2777 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 · cmul 10734 ℕcn 11830 2c2 11885 ℕ0cn0 12090 !cfa 13839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-fac 13840 |
This theorem is referenced by: 2np3bcnp1 39822 |
Copyright terms: Public domain | W3C validator |