![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > facp2 | Structured version Visualization version GIF version |
Description: The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.) |
Ref | Expression |
---|---|
facp2 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12479 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | ax-1cn 11165 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
3 | addass 11194 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) | |
4 | 2, 2, 3 | mp3an23 1454 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
5 | 1, 4 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
6 | df-2 12272 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
7 | 6 | oveq2i 7417 | . . . . . . . . 9 ⊢ (𝑁 + 2) = (𝑁 + (1 + 1)) |
8 | 7 | eqcomi 2742 | . . . . . . . 8 ⊢ (𝑁 + (1 + 1)) = (𝑁 + 2) |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
10 | 5, 9 | eqtrd 2773 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
11 | 10 | fveq2d 6893 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = (!‘(𝑁 + 2))) |
12 | peano2nn0 12509 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
13 | facp1 14235 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (!‘((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
15 | 11, 14 | eqtr3d 2775 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1))) |
16 | 10 | oveq2d 7422 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · ((𝑁 + 1) + 1)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
17 | 15, 16 | eqtrd 2773 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘(𝑁 + 1)) · (𝑁 + 2))) |
18 | facp1 14235 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | |
19 | 18 | oveq1d 7421 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((!‘(𝑁 + 1)) · (𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
20 | 17, 19 | eqtrd 2773 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2))) |
21 | faccl 14240 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
22 | nncn 12217 | . . . 4 ⊢ ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
24 | nn0cn 12479 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) | |
25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) |
26 | 2cn 12284 | . . . . 5 ⊢ 2 ∈ ℂ | |
27 | addcl 11189 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + 2) ∈ ℂ) | |
28 | 26, 27 | mpan2 690 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 + 2) ∈ ℂ) |
29 | 1, 28 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℂ) |
30 | mulass 11195 | . . 3 ⊢ (((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (𝑁 + 2) ∈ ℂ) → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) | |
31 | 23, 25, 29, 30 | syl3anc 1372 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
32 | 20, 31 | eqtrd 2773 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7406 ℂcc 11105 1c1 11108 + caddc 11110 · cmul 11112 ℕcn 12209 2c2 12264 ℕ0cn0 12469 !cfa 14230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-fac 14231 |
This theorem is referenced by: 2np3bcnp1 40949 |
Copyright terms: Public domain | W3C validator |