MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asin1 Structured version   Visualization version   GIF version

Theorem asin1 26831
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asin1 (arcsin‘1) = (π / 2)

Proof of Theorem asin1
StepHypRef Expression
1 ax-1cn 11064 . . 3 1 ∈ ℂ
2 asinval 26819 . . 3 (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))))
31, 2ax-mp 5 . 2 (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))
4 ax-icn 11065 . . . . . . 7 i ∈ ℂ
54addridi 11300 . . . . . 6 (i + 0) = i
64mulridi 11116 . . . . . . 7 (i · 1) = i
7 sq1 14102 . . . . . . . . . . 11 (1↑2) = 1
87oveq2i 7357 . . . . . . . . . 10 (1 − (1↑2)) = (1 − 1)
9 1m1e0 12197 . . . . . . . . . 10 (1 − 1) = 0
108, 9eqtri 2754 . . . . . . . . 9 (1 − (1↑2)) = 0
1110fveq2i 6825 . . . . . . . 8 (√‘(1 − (1↑2))) = (√‘0)
12 sqrt0 15148 . . . . . . . 8 (√‘0) = 0
1311, 12eqtri 2754 . . . . . . 7 (√‘(1 − (1↑2))) = 0
146, 13oveq12i 7358 . . . . . 6 ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0)
15 efhalfpi 26407 . . . . . 6 (exp‘(i · (π / 2))) = i
165, 14, 153eqtr4i 2764 . . . . 5 ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2)))
1716fveq2i 6825 . . . 4 (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2))))
18 halfpire 26400 . . . . . . . 8 (π / 2) ∈ ℝ
1918recni 11126 . . . . . . 7 (π / 2) ∈ ℂ
204, 19mulcli 11119 . . . . . 6 (i · (π / 2)) ∈ ℂ
21 pipos 26395 . . . . . . . . 9 0 < π
22 pire 26393 . . . . . . . . . 10 π ∈ ℝ
23 lt0neg2 11624 . . . . . . . . . 10 (π ∈ ℝ → (0 < π ↔ -π < 0))
2422, 23ax-mp 5 . . . . . . . . 9 (0 < π ↔ -π < 0)
2521, 24mpbi 230 . . . . . . . 8 -π < 0
26 pirp 26397 . . . . . . . . . 10 π ∈ ℝ+
27 rphalfcl 12919 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
2826, 27ax-mp 5 . . . . . . . . 9 (π / 2) ∈ ℝ+
29 rpgt0 12903 . . . . . . . . 9 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
3028, 29ax-mp 5 . . . . . . . 8 0 < (π / 2)
3122renegcli 11422 . . . . . . . . 9 -π ∈ ℝ
32 0re 11114 . . . . . . . . 9 0 ∈ ℝ
3331, 32, 18lttri 11239 . . . . . . . 8 ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2))
3425, 30, 33mp2an 692 . . . . . . 7 -π < (π / 2)
3520addlidi 11301 . . . . . . . . 9 (0 + (i · (π / 2))) = (i · (π / 2))
3635fveq2i 6825 . . . . . . . 8 (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2)))
3732, 18crimi 15100 . . . . . . . 8 (ℑ‘(0 + (i · (π / 2)))) = (π / 2)
3836, 37eqtr3i 2756 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
3934, 38breqtrri 5116 . . . . . 6 -π < (ℑ‘(i · (π / 2)))
40 rphalflt 12921 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
4126, 40ax-mp 5 . . . . . . . 8 (π / 2) < π
4218, 22, 41ltleii 11236 . . . . . . 7 (π / 2) ≤ π
4338, 42eqbrtri 5110 . . . . . 6 (ℑ‘(i · (π / 2))) ≤ π
44 ellogrn 26495 . . . . . 6 ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π))
4520, 39, 43, 44mpbir3an 1342 . . . . 5 (i · (π / 2)) ∈ ran log
46 logef 26517 . . . . 5 ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)))
4745, 46ax-mp 5 . . . 4 (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))
4817, 47eqtri 2754 . . 3 (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2))
4948oveq2i 7357 . 2 (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2)))
504, 4mulneg1i 11563 . . . . . 6 (-i · i) = -(i · i)
51 ixi 11746 . . . . . . 7 (i · i) = -1
5251negeqi 11353 . . . . . 6 -(i · i) = --1
53 negneg1e1 12114 . . . . . 6 --1 = 1
5450, 52, 533eqtri 2758 . . . . 5 (-i · i) = 1
5554oveq1i 7356 . . . 4 ((-i · i) · (π / 2)) = (1 · (π / 2))
56 negicn 11361 . . . . 5 -i ∈ ℂ
5756, 4, 19mulassi 11123 . . . 4 ((-i · i) · (π / 2)) = (-i · (i · (π / 2)))
5855, 57eqtr3i 2756 . . 3 (1 · (π / 2)) = (-i · (i · (π / 2)))
5919mullidi 11117 . . 3 (1 · (π / 2)) = (π / 2)
6058, 59eqtr3i 2756 . 2 (-i · (i · (π / 2))) = (π / 2)
613, 49, 603eqtri 2758 1 (arcsin‘1) = (π / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111   class class class wbr 5089  ran crn 5615  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  +crp 12890  cexp 13968  cim 15005  csqrt 15140  expce 15968  πcpi 15973  logclog 26490  arcsincasin 26799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-asin 26802
This theorem is referenced by:  acos1  26832  reasinsin  26833  areacirc  37763
  Copyright terms: Public domain W3C validator