![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version |
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asin1 | ⊢ (arcsin‘1) = (π / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10282 | . . 3 ⊢ 1 ∈ ℂ | |
2 | asinval 24961 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
4 | ax-icn 10283 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | addid1i 10513 | . . . . . 6 ⊢ (i + 0) = i |
6 | 4 | mulid1i 10333 | . . . . . . 7 ⊢ (i · 1) = i |
7 | sq1 13212 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
8 | 7 | oveq2i 6889 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
9 | 1m1e0 11385 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
10 | 8, 9 | eqtri 2821 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
11 | 10 | fveq2i 6414 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
12 | sqrt0 14323 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
13 | 11, 12 | eqtri 2821 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
14 | 6, 13 | oveq12i 6890 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
15 | efhalfpi 24565 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
16 | 5, 14, 15 | 3eqtr4i 2831 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
17 | 16 | fveq2i 6414 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
18 | halfpire 24558 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
19 | 18 | recni 10343 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
20 | 4, 19 | mulcli 10336 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
21 | pipos 24554 | . . . . . . . . 9 ⊢ 0 < π | |
22 | pire 24552 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
23 | lt0neg2 10827 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
25 | 21, 24 | mpbi 222 | . . . . . . . 8 ⊢ -π < 0 |
26 | pirp 24555 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
27 | rphalfcl 12103 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
29 | rpgt0 12088 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
31 | 22 | renegcli 10634 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
32 | 0re 10330 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
33 | 31, 32, 18 | lttri 10453 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
34 | 25, 30, 33 | mp2an 684 | . . . . . . 7 ⊢ -π < (π / 2) |
35 | 20 | addid2i 10514 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
36 | 35 | fveq2i 6414 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
37 | 32, 18 | crimi 14274 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
38 | 36, 37 | eqtr3i 2823 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
39 | 34, 38 | breqtrri 4870 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
40 | rphalflt 12105 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
42 | 18, 22, 41 | ltleii 10450 | . . . . . . 7 ⊢ (π / 2) ≤ π |
43 | 38, 42 | eqbrtri 4864 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
44 | ellogrn 24647 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
45 | 20, 39, 43, 44 | mpbir3an 1442 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
46 | logef 24669 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
48 | 17, 47 | eqtri 2821 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
49 | 48 | oveq2i 6889 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
50 | 4, 4 | mulneg1i 10768 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
51 | ixi 10948 | . . . . . . 7 ⊢ (i · i) = -1 | |
52 | 51 | negeqi 10565 | . . . . . 6 ⊢ -(i · i) = --1 |
53 | negneg1e1 11438 | . . . . . 6 ⊢ --1 = 1 | |
54 | 50, 52, 53 | 3eqtri 2825 | . . . . 5 ⊢ (-i · i) = 1 |
55 | 54 | oveq1i 6888 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
56 | negicn 10573 | . . . . 5 ⊢ -i ∈ ℂ | |
57 | 56, 4, 19 | mulassi 10340 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
58 | 55, 57 | eqtr3i 2823 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
59 | 19 | mulid2i 10334 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
60 | 58, 59 | eqtr3i 2823 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
61 | 3, 49, 60 | 3eqtri 2825 | 1 ⊢ (arcsin‘1) = (π / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 ran crn 5313 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 ℝcr 10223 0cc0 10224 1c1 10225 ici 10226 + caddc 10227 · cmul 10229 < clt 10363 ≤ cle 10364 − cmin 10556 -cneg 10557 / cdiv 10976 2c2 11368 ℝ+crp 12074 ↑cexp 13114 ℑcim 14179 √csqrt 14314 expce 15128 πcpi 15133 logclog 24642 arcsincasin 24941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-exp 13115 df-fac 13314 df-bc 13343 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-sin 15136 df-cos 15137 df-pi 15139 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-lp 21269 df-perf 21270 df-cn 21360 df-cnp 21361 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cncf 23009 df-limc 23971 df-dv 23972 df-log 24644 df-asin 24944 |
This theorem is referenced by: acos1 24974 reasinsin 24975 areacirc 33993 |
Copyright terms: Public domain | W3C validator |