| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version | ||
| Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| asin1 | ⊢ (arcsin‘1) = (π / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | asinval 26819 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
| 4 | ax-icn 11065 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | addridi 11300 | . . . . . 6 ⊢ (i + 0) = i |
| 6 | 4 | mulridi 11116 | . . . . . . 7 ⊢ (i · 1) = i |
| 7 | sq1 14102 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 8 | 7 | oveq2i 7357 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
| 9 | 1m1e0 12197 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 10 | 8, 9 | eqtri 2754 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
| 11 | 10 | fveq2i 6825 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
| 12 | sqrt0 15148 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
| 13 | 11, 12 | eqtri 2754 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
| 14 | 6, 13 | oveq12i 7358 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
| 15 | efhalfpi 26407 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
| 16 | 5, 14, 15 | 3eqtr4i 2764 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
| 17 | 16 | fveq2i 6825 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
| 18 | halfpire 26400 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
| 19 | 18 | recni 11126 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
| 20 | 4, 19 | mulcli 11119 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
| 21 | pipos 26395 | . . . . . . . . 9 ⊢ 0 < π | |
| 22 | pire 26393 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 23 | lt0neg2 11624 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . 8 ⊢ -π < 0 |
| 26 | pirp 26397 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 27 | rphalfcl 12919 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 29 | rpgt0 12903 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 31 | 22 | renegcli 11422 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
| 32 | 0re 11114 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 33 | 31, 32, 18 | lttri 11239 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
| 34 | 25, 30, 33 | mp2an 692 | . . . . . . 7 ⊢ -π < (π / 2) |
| 35 | 20 | addlidi 11301 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
| 36 | 35 | fveq2i 6825 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
| 37 | 32, 18 | crimi 15100 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
| 38 | 36, 37 | eqtr3i 2756 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
| 39 | 34, 38 | breqtrri 5116 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
| 40 | rphalflt 12921 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
| 41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
| 42 | 18, 22, 41 | ltleii 11236 | . . . . . . 7 ⊢ (π / 2) ≤ π |
| 43 | 38, 42 | eqbrtri 5110 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
| 44 | ellogrn 26495 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
| 45 | 20, 39, 43, 44 | mpbir3an 1342 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
| 46 | logef 26517 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
| 48 | 17, 47 | eqtri 2754 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
| 49 | 48 | oveq2i 7357 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
| 50 | 4, 4 | mulneg1i 11563 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
| 51 | ixi 11746 | . . . . . . 7 ⊢ (i · i) = -1 | |
| 52 | 51 | negeqi 11353 | . . . . . 6 ⊢ -(i · i) = --1 |
| 53 | negneg1e1 12114 | . . . . . 6 ⊢ --1 = 1 | |
| 54 | 50, 52, 53 | 3eqtri 2758 | . . . . 5 ⊢ (-i · i) = 1 |
| 55 | 54 | oveq1i 7356 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
| 56 | negicn 11361 | . . . . 5 ⊢ -i ∈ ℂ | |
| 57 | 56, 4, 19 | mulassi 11123 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
| 58 | 55, 57 | eqtr3i 2756 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
| 59 | 19 | mullidi 11117 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
| 60 | 58, 59 | eqtr3i 2756 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
| 61 | 3, 49, 60 | 3eqtri 2758 | 1 ⊢ (arcsin‘1) = (π / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ici 11008 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 -cneg 11345 / cdiv 11774 2c2 12180 ℝ+crp 12890 ↑cexp 13968 ℑcim 15005 √csqrt 15140 expce 15968 πcpi 15973 logclog 26490 arcsincasin 26799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-asin 26802 |
| This theorem is referenced by: acos1 26832 reasinsin 26833 areacirc 37763 |
| Copyright terms: Public domain | W3C validator |