| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version | ||
| Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| asin1 | ⊢ (arcsin‘1) = (π / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11185 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | asinval 26842 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
| 4 | ax-icn 11186 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | addridi 11420 | . . . . . 6 ⊢ (i + 0) = i |
| 6 | 4 | mulridi 11237 | . . . . . . 7 ⊢ (i · 1) = i |
| 7 | sq1 14211 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 8 | 7 | oveq2i 7414 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
| 9 | 1m1e0 12310 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 10 | 8, 9 | eqtri 2758 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
| 11 | 10 | fveq2i 6878 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
| 12 | sqrt0 15258 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
| 13 | 11, 12 | eqtri 2758 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
| 14 | 6, 13 | oveq12i 7415 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
| 15 | efhalfpi 26430 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
| 16 | 5, 14, 15 | 3eqtr4i 2768 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
| 17 | 16 | fveq2i 6878 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
| 18 | halfpire 26423 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
| 19 | 18 | recni 11247 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
| 20 | 4, 19 | mulcli 11240 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
| 21 | pipos 26418 | . . . . . . . . 9 ⊢ 0 < π | |
| 22 | pire 26416 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 23 | lt0neg2 11742 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . 8 ⊢ -π < 0 |
| 26 | pirp 26420 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 27 | rphalfcl 13034 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 29 | rpgt0 13019 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 31 | 22 | renegcli 11542 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
| 32 | 0re 11235 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 33 | 31, 32, 18 | lttri 11359 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
| 34 | 25, 30, 33 | mp2an 692 | . . . . . . 7 ⊢ -π < (π / 2) |
| 35 | 20 | addlidi 11421 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
| 36 | 35 | fveq2i 6878 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
| 37 | 32, 18 | crimi 15210 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
| 38 | 36, 37 | eqtr3i 2760 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
| 39 | 34, 38 | breqtrri 5146 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
| 40 | rphalflt 13036 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
| 41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
| 42 | 18, 22, 41 | ltleii 11356 | . . . . . . 7 ⊢ (π / 2) ≤ π |
| 43 | 38, 42 | eqbrtri 5140 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
| 44 | ellogrn 26518 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
| 45 | 20, 39, 43, 44 | mpbir3an 1342 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
| 46 | logef 26540 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
| 48 | 17, 47 | eqtri 2758 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
| 49 | 48 | oveq2i 7414 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
| 50 | 4, 4 | mulneg1i 11681 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
| 51 | ixi 11864 | . . . . . . 7 ⊢ (i · i) = -1 | |
| 52 | 51 | negeqi 11473 | . . . . . 6 ⊢ -(i · i) = --1 |
| 53 | negneg1e1 12356 | . . . . . 6 ⊢ --1 = 1 | |
| 54 | 50, 52, 53 | 3eqtri 2762 | . . . . 5 ⊢ (-i · i) = 1 |
| 55 | 54 | oveq1i 7413 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
| 56 | negicn 11481 | . . . . 5 ⊢ -i ∈ ℂ | |
| 57 | 56, 4, 19 | mulassi 11244 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
| 58 | 55, 57 | eqtr3i 2760 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
| 59 | 19 | mullidi 11238 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
| 60 | 58, 59 | eqtr3i 2760 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
| 61 | 3, 49, 60 | 3eqtri 2762 | 1 ⊢ (arcsin‘1) = (π / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ran crn 5655 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 ici 11129 + caddc 11130 · cmul 11132 < clt 11267 ≤ cle 11268 − cmin 11464 -cneg 11465 / cdiv 11892 2c2 12293 ℝ+crp 13006 ↑cexp 14077 ℑcim 15115 √csqrt 15250 expce 16075 πcpi 16080 logclog 26513 arcsincasin 26822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 df-log 26515 df-asin 26825 |
| This theorem is referenced by: acos1 26855 reasinsin 26856 areacirc 37683 |
| Copyright terms: Public domain | W3C validator |