| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version | ||
| Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| asin1 | ⊢ (arcsin‘1) = (π / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | asinval 26792 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
| 4 | ax-icn 11127 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | addridi 11361 | . . . . . 6 ⊢ (i + 0) = i |
| 6 | 4 | mulridi 11178 | . . . . . . 7 ⊢ (i · 1) = i |
| 7 | sq1 14160 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 8 | 7 | oveq2i 7398 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
| 9 | 1m1e0 12258 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 10 | 8, 9 | eqtri 2752 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
| 11 | 10 | fveq2i 6861 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
| 12 | sqrt0 15207 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
| 13 | 11, 12 | eqtri 2752 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
| 14 | 6, 13 | oveq12i 7399 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
| 15 | efhalfpi 26380 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
| 16 | 5, 14, 15 | 3eqtr4i 2762 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
| 17 | 16 | fveq2i 6861 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
| 18 | halfpire 26373 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
| 19 | 18 | recni 11188 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
| 20 | 4, 19 | mulcli 11181 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
| 21 | pipos 26368 | . . . . . . . . 9 ⊢ 0 < π | |
| 22 | pire 26366 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 23 | lt0neg2 11685 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . 8 ⊢ -π < 0 |
| 26 | pirp 26370 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 27 | rphalfcl 12980 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 29 | rpgt0 12964 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 31 | 22 | renegcli 11483 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
| 32 | 0re 11176 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 33 | 31, 32, 18 | lttri 11300 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
| 34 | 25, 30, 33 | mp2an 692 | . . . . . . 7 ⊢ -π < (π / 2) |
| 35 | 20 | addlidi 11362 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
| 36 | 35 | fveq2i 6861 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
| 37 | 32, 18 | crimi 15159 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
| 38 | 36, 37 | eqtr3i 2754 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
| 39 | 34, 38 | breqtrri 5134 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
| 40 | rphalflt 12982 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
| 41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
| 42 | 18, 22, 41 | ltleii 11297 | . . . . . . 7 ⊢ (π / 2) ≤ π |
| 43 | 38, 42 | eqbrtri 5128 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
| 44 | ellogrn 26468 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
| 45 | 20, 39, 43, 44 | mpbir3an 1342 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
| 46 | logef 26490 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
| 48 | 17, 47 | eqtri 2752 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
| 49 | 48 | oveq2i 7398 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
| 50 | 4, 4 | mulneg1i 11624 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
| 51 | ixi 11807 | . . . . . . 7 ⊢ (i · i) = -1 | |
| 52 | 51 | negeqi 11414 | . . . . . 6 ⊢ -(i · i) = --1 |
| 53 | negneg1e1 12175 | . . . . . 6 ⊢ --1 = 1 | |
| 54 | 50, 52, 53 | 3eqtri 2756 | . . . . 5 ⊢ (-i · i) = 1 |
| 55 | 54 | oveq1i 7397 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
| 56 | negicn 11422 | . . . . 5 ⊢ -i ∈ ℂ | |
| 57 | 56, 4, 19 | mulassi 11185 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
| 58 | 55, 57 | eqtr3i 2754 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
| 59 | 19 | mullidi 11179 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
| 60 | 58, 59 | eqtr3i 2754 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
| 61 | 3, 49, 60 | 3eqtri 2756 | 1 ⊢ (arcsin‘1) = (π / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 -cneg 11406 / cdiv 11835 2c2 12241 ℝ+crp 12951 ↑cexp 14026 ℑcim 15064 √csqrt 15199 expce 16027 πcpi 16032 logclog 26463 arcsincasin 26772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-asin 26775 |
| This theorem is referenced by: acos1 26805 reasinsin 26806 areacirc 37707 |
| Copyright terms: Public domain | W3C validator |