Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version |
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asin1 | ⊢ (arcsin‘1) = (π / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
2 | asinval 25937 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
4 | ax-icn 10861 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | addid1i 11092 | . . . . . 6 ⊢ (i + 0) = i |
6 | 4 | mulid1i 10910 | . . . . . . 7 ⊢ (i · 1) = i |
7 | sq1 13840 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
8 | 7 | oveq2i 7266 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
9 | 1m1e0 11975 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
10 | 8, 9 | eqtri 2766 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
11 | 10 | fveq2i 6759 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
12 | sqrt0 14881 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
13 | 11, 12 | eqtri 2766 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
14 | 6, 13 | oveq12i 7267 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
15 | efhalfpi 25533 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
16 | 5, 14, 15 | 3eqtr4i 2776 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
17 | 16 | fveq2i 6759 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
18 | halfpire 25526 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
19 | 18 | recni 10920 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
20 | 4, 19 | mulcli 10913 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
21 | pipos 25522 | . . . . . . . . 9 ⊢ 0 < π | |
22 | pire 25520 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
23 | lt0neg2 11412 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
25 | 21, 24 | mpbi 229 | . . . . . . . 8 ⊢ -π < 0 |
26 | pirp 25523 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
27 | rphalfcl 12686 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
29 | rpgt0 12671 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
31 | 22 | renegcli 11212 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
32 | 0re 10908 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
33 | 31, 32, 18 | lttri 11031 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
34 | 25, 30, 33 | mp2an 688 | . . . . . . 7 ⊢ -π < (π / 2) |
35 | 20 | addid2i 11093 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
36 | 35 | fveq2i 6759 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
37 | 32, 18 | crimi 14832 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
38 | 36, 37 | eqtr3i 2768 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
39 | 34, 38 | breqtrri 5097 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
40 | rphalflt 12688 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
42 | 18, 22, 41 | ltleii 11028 | . . . . . . 7 ⊢ (π / 2) ≤ π |
43 | 38, 42 | eqbrtri 5091 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
44 | ellogrn 25620 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
45 | 20, 39, 43, 44 | mpbir3an 1339 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
46 | logef 25642 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
48 | 17, 47 | eqtri 2766 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
49 | 48 | oveq2i 7266 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
50 | 4, 4 | mulneg1i 11351 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
51 | ixi 11534 | . . . . . . 7 ⊢ (i · i) = -1 | |
52 | 51 | negeqi 11144 | . . . . . 6 ⊢ -(i · i) = --1 |
53 | negneg1e1 12021 | . . . . . 6 ⊢ --1 = 1 | |
54 | 50, 52, 53 | 3eqtri 2770 | . . . . 5 ⊢ (-i · i) = 1 |
55 | 54 | oveq1i 7265 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
56 | negicn 11152 | . . . . 5 ⊢ -i ∈ ℂ | |
57 | 56, 4, 19 | mulassi 10917 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
58 | 55, 57 | eqtr3i 2768 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
59 | 19 | mulid2i 10911 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
60 | 58, 59 | eqtr3i 2768 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
61 | 3, 49, 60 | 3eqtri 2770 | 1 ⊢ (arcsin‘1) = (π / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 ℝ+crp 12659 ↑cexp 13710 ℑcim 14737 √csqrt 14872 expce 15699 πcpi 15704 logclog 25615 arcsincasin 25917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-asin 25920 |
This theorem is referenced by: acos1 25950 reasinsin 25951 areacirc 35797 |
Copyright terms: Public domain | W3C validator |