![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version |
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asin1 | ⊢ (arcsin‘1) = (π / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11164 | . . 3 ⊢ 1 ∈ ℂ | |
2 | asinval 26376 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
4 | ax-icn 11165 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | addridi 11397 | . . . . . 6 ⊢ (i + 0) = i |
6 | 4 | mulridi 11214 | . . . . . . 7 ⊢ (i · 1) = i |
7 | sq1 14155 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
8 | 7 | oveq2i 7416 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
9 | 1m1e0 12280 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
10 | 8, 9 | eqtri 2760 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
11 | 10 | fveq2i 6891 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
12 | sqrt0 15184 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
13 | 11, 12 | eqtri 2760 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
14 | 6, 13 | oveq12i 7417 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
15 | efhalfpi 25972 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
16 | 5, 14, 15 | 3eqtr4i 2770 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
17 | 16 | fveq2i 6891 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
18 | halfpire 25965 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
19 | 18 | recni 11224 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
20 | 4, 19 | mulcli 11217 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
21 | pipos 25961 | . . . . . . . . 9 ⊢ 0 < π | |
22 | pire 25959 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
23 | lt0neg2 11717 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
25 | 21, 24 | mpbi 229 | . . . . . . . 8 ⊢ -π < 0 |
26 | pirp 25962 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
27 | rphalfcl 12997 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
29 | rpgt0 12982 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
31 | 22 | renegcli 11517 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
32 | 0re 11212 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
33 | 31, 32, 18 | lttri 11336 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
34 | 25, 30, 33 | mp2an 690 | . . . . . . 7 ⊢ -π < (π / 2) |
35 | 20 | addlidi 11398 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
36 | 35 | fveq2i 6891 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
37 | 32, 18 | crimi 15136 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
38 | 36, 37 | eqtr3i 2762 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
39 | 34, 38 | breqtrri 5174 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
40 | rphalflt 12999 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
42 | 18, 22, 41 | ltleii 11333 | . . . . . . 7 ⊢ (π / 2) ≤ π |
43 | 38, 42 | eqbrtri 5168 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
44 | ellogrn 26059 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
45 | 20, 39, 43, 44 | mpbir3an 1341 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
46 | logef 26081 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
48 | 17, 47 | eqtri 2760 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
49 | 48 | oveq2i 7416 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
50 | 4, 4 | mulneg1i 11656 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
51 | ixi 11839 | . . . . . . 7 ⊢ (i · i) = -1 | |
52 | 51 | negeqi 11449 | . . . . . 6 ⊢ -(i · i) = --1 |
53 | negneg1e1 12326 | . . . . . 6 ⊢ --1 = 1 | |
54 | 50, 52, 53 | 3eqtri 2764 | . . . . 5 ⊢ (-i · i) = 1 |
55 | 54 | oveq1i 7415 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
56 | negicn 11457 | . . . . 5 ⊢ -i ∈ ℂ | |
57 | 56, 4, 19 | mulassi 11221 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
58 | 55, 57 | eqtr3i 2762 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
59 | 19 | mullidi 11215 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
60 | 58, 59 | eqtr3i 2762 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
61 | 3, 49, 60 | 3eqtri 2764 | 1 ⊢ (arcsin‘1) = (π / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ran crn 5676 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 ici 11108 + caddc 11109 · cmul 11111 < clt 11244 ≤ cle 11245 − cmin 11440 -cneg 11441 / cdiv 11867 2c2 12263 ℝ+crp 12970 ↑cexp 14023 ℑcim 15041 √csqrt 15176 expce 16001 πcpi 16006 logclog 26054 arcsincasin 26356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 df-log 26056 df-asin 26359 |
This theorem is referenced by: acos1 26389 reasinsin 26390 areacirc 36569 |
Copyright terms: Public domain | W3C validator |