![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version |
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asin1 | ⊢ (arcsin‘1) = (π / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
2 | asinval 26943 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
4 | ax-icn 11243 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | addridi 11477 | . . . . . 6 ⊢ (i + 0) = i |
6 | 4 | mulridi 11294 | . . . . . . 7 ⊢ (i · 1) = i |
7 | sq1 14244 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
8 | 7 | oveq2i 7459 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
9 | 1m1e0 12365 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
10 | 8, 9 | eqtri 2768 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
11 | 10 | fveq2i 6923 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
12 | sqrt0 15290 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
13 | 11, 12 | eqtri 2768 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
14 | 6, 13 | oveq12i 7460 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
15 | efhalfpi 26531 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
16 | 5, 14, 15 | 3eqtr4i 2778 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
17 | 16 | fveq2i 6923 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
18 | halfpire 26524 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
19 | 18 | recni 11304 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
20 | 4, 19 | mulcli 11297 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
21 | pipos 26520 | . . . . . . . . 9 ⊢ 0 < π | |
22 | pire 26518 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
23 | lt0neg2 11797 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
25 | 21, 24 | mpbi 230 | . . . . . . . 8 ⊢ -π < 0 |
26 | pirp 26521 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
27 | rphalfcl 13084 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
29 | rpgt0 13069 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
31 | 22 | renegcli 11597 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
32 | 0re 11292 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
33 | 31, 32, 18 | lttri 11416 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
34 | 25, 30, 33 | mp2an 691 | . . . . . . 7 ⊢ -π < (π / 2) |
35 | 20 | addlidi 11478 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
36 | 35 | fveq2i 6923 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
37 | 32, 18 | crimi 15242 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
38 | 36, 37 | eqtr3i 2770 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
39 | 34, 38 | breqtrri 5193 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
40 | rphalflt 13086 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
42 | 18, 22, 41 | ltleii 11413 | . . . . . . 7 ⊢ (π / 2) ≤ π |
43 | 38, 42 | eqbrtri 5187 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
44 | ellogrn 26619 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
45 | 20, 39, 43, 44 | mpbir3an 1341 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
46 | logef 26641 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
48 | 17, 47 | eqtri 2768 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
49 | 48 | oveq2i 7459 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
50 | 4, 4 | mulneg1i 11736 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
51 | ixi 11919 | . . . . . . 7 ⊢ (i · i) = -1 | |
52 | 51 | negeqi 11529 | . . . . . 6 ⊢ -(i · i) = --1 |
53 | negneg1e1 12411 | . . . . . 6 ⊢ --1 = 1 | |
54 | 50, 52, 53 | 3eqtri 2772 | . . . . 5 ⊢ (-i · i) = 1 |
55 | 54 | oveq1i 7458 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
56 | negicn 11537 | . . . . 5 ⊢ -i ∈ ℂ | |
57 | 56, 4, 19 | mulassi 11301 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
58 | 55, 57 | eqtr3i 2770 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
59 | 19 | mullidi 11295 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
60 | 58, 59 | eqtr3i 2770 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
61 | 3, 49, 60 | 3eqtri 2772 | 1 ⊢ (arcsin‘1) = (π / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 ici 11186 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 -cneg 11521 / cdiv 11947 2c2 12348 ℝ+crp 13057 ↑cexp 14112 ℑcim 15147 √csqrt 15282 expce 16109 πcpi 16114 logclog 26614 arcsincasin 26923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-asin 26926 |
This theorem is referenced by: acos1 26956 reasinsin 26957 areacirc 37673 |
Copyright terms: Public domain | W3C validator |