| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version | ||
| Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| asin1 | ⊢ (arcsin‘1) = (π / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | asinval 26790 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
| 4 | ax-icn 11068 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | addridi 11303 | . . . . . 6 ⊢ (i + 0) = i |
| 6 | 4 | mulridi 11119 | . . . . . . 7 ⊢ (i · 1) = i |
| 7 | sq1 14102 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
| 8 | 7 | oveq2i 7360 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
| 9 | 1m1e0 12200 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 10 | 8, 9 | eqtri 2752 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
| 11 | 10 | fveq2i 6825 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
| 12 | sqrt0 15148 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
| 13 | 11, 12 | eqtri 2752 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
| 14 | 6, 13 | oveq12i 7361 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
| 15 | efhalfpi 26378 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
| 16 | 5, 14, 15 | 3eqtr4i 2762 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
| 17 | 16 | fveq2i 6825 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
| 18 | halfpire 26371 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
| 19 | 18 | recni 11129 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
| 20 | 4, 19 | mulcli 11122 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
| 21 | pipos 26366 | . . . . . . . . 9 ⊢ 0 < π | |
| 22 | pire 26364 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 23 | lt0neg2 11627 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . 8 ⊢ -π < 0 |
| 26 | pirp 26368 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 27 | rphalfcl 12922 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 29 | rpgt0 12906 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 31 | 22 | renegcli 11425 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
| 32 | 0re 11117 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 33 | 31, 32, 18 | lttri 11242 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
| 34 | 25, 30, 33 | mp2an 692 | . . . . . . 7 ⊢ -π < (π / 2) |
| 35 | 20 | addlidi 11304 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
| 36 | 35 | fveq2i 6825 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
| 37 | 32, 18 | crimi 15100 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
| 38 | 36, 37 | eqtr3i 2754 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
| 39 | 34, 38 | breqtrri 5119 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
| 40 | rphalflt 12924 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
| 41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
| 42 | 18, 22, 41 | ltleii 11239 | . . . . . . 7 ⊢ (π / 2) ≤ π |
| 43 | 38, 42 | eqbrtri 5113 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
| 44 | ellogrn 26466 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
| 45 | 20, 39, 43, 44 | mpbir3an 1342 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
| 46 | logef 26488 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
| 48 | 17, 47 | eqtri 2752 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
| 49 | 48 | oveq2i 7360 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
| 50 | 4, 4 | mulneg1i 11566 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
| 51 | ixi 11749 | . . . . . . 7 ⊢ (i · i) = -1 | |
| 52 | 51 | negeqi 11356 | . . . . . 6 ⊢ -(i · i) = --1 |
| 53 | negneg1e1 12117 | . . . . . 6 ⊢ --1 = 1 | |
| 54 | 50, 52, 53 | 3eqtri 2756 | . . . . 5 ⊢ (-i · i) = 1 |
| 55 | 54 | oveq1i 7359 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
| 56 | negicn 11364 | . . . . 5 ⊢ -i ∈ ℂ | |
| 57 | 56, 4, 19 | mulassi 11126 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
| 58 | 55, 57 | eqtr3i 2754 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
| 59 | 19 | mullidi 11120 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
| 60 | 58, 59 | eqtr3i 2754 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
| 61 | 3, 49, 60 | 3eqtri 2756 | 1 ⊢ (arcsin‘1) = (π / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 ici 11011 + caddc 11012 · cmul 11014 < clt 11149 ≤ cle 11150 − cmin 11347 -cneg 11348 / cdiv 11777 2c2 12183 ℝ+crp 12893 ↑cexp 13968 ℑcim 15005 √csqrt 15140 expce 15968 πcpi 15973 logclog 26461 arcsincasin 26770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-asin 26773 |
| This theorem is referenced by: acos1 26803 reasinsin 26804 areacirc 37697 |
| Copyright terms: Public domain | W3C validator |