MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinneg Structured version   Visualization version   GIF version

Theorem asinneg 25456
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinneg (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))

Proof of Theorem asinneg
StepHypRef Expression
1 ax-icn 10588 . . . . . . . . . 10 i ∈ ℂ
2 mulcl 10613 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10587 . . . . . . . . . . 11 1 ∈ ℂ
5 sqcl 13476 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10877 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 589 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14789 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcld 10652 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
10 asinlem 25438 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
119, 10logcld 25146 . . . . . . 7 (𝐴 ∈ ℂ → (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
12 efneg 15443 . . . . . . 7 ((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
14 eflog 25152 . . . . . . . 8 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
159, 10, 14syl2anc 586 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1615oveq2d 7164 . . . . . 6 (𝐴 ∈ ℂ → (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) = (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
17 asinlem2 25439 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
184a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℂ)
19 negcl 10878 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
20 mulcl 10613 . . . . . . . . . 10 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
211, 19, 20sylancr 589 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
2219sqcld 13500 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-𝐴↑2) ∈ ℂ)
23 subcl 10877 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
244, 22, 23sylancr 589 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) ∈ ℂ)
2524sqrtcld 14789 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
2621, 25addcld 10652 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
2718, 9, 26, 10divmuld 11430 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ↔ (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1))
2817, 27mpbird 259 . . . . . 6 (𝐴 ∈ ℂ → (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2913, 16, 283eqtrd 2858 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
30 asinlem 25438 . . . . . . 7 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3119, 30syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3211negcld 10976 . . . . . . . 8 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
3311imnegd 14561 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
3411imcld 14546 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
3534renegcld 11059 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
36 pire 25036 . . . . . . . . . . . . 13 π ∈ ℝ
3736a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ∈ ℝ)
389, 10logimcld 25147 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
3938simprd 498 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
409renegd 14560 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
41 asinlem3 25441 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
429recld 14545 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
4342le0neg2d 11204 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0))
4441, 43mpbid 234 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
4540, 44eqbrtrd 5079 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
469negcld 10976 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
4746recld 14545 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
48 0re 10635 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
49 lenlt 10711 . . . . . . . . . . . . . . . 16 (((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5047, 48, 49sylancl 588 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5145, 50mpbid 234 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
52 lognegb 25165 . . . . . . . . . . . . . . . . 17 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
539, 10, 52syl2anc 586 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
54 rpgt0 12393 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
55 rpre 12389 . . . . . . . . . . . . . . . . . 18 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ)
5655rered 14575 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5754, 56breqtrrd 5085 . . . . . . . . . . . . . . . 16 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
5853, 57syl6bir 256 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5958necon3bd 3028 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π))
6051, 59mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π)
6160necomd 3069 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ≠ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6234, 37, 39, 61leneltd 10786 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π)
63 ltneg 11132 . . . . . . . . . . . 12 (((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6434, 36, 63sylancl 588 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6562, 64mpbid 234 . . . . . . . . . 10 (𝐴 ∈ ℂ → -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6638simpld 497 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6736renegcli 10939 . . . . . . . . . . . . 13 -π ∈ ℝ
68 ltle 10721 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6967, 34, 68sylancr 589 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
7066, 69mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
71 lenegcon1 11136 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7236, 34, 71sylancr 589 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7370, 72mpbid 234 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
7467rexri 10691 . . . . . . . . . . 11 -π ∈ ℝ*
75 elioc2 12791 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)))
7674, 36, 75mp2an 690 . . . . . . . . . 10 (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7735, 65, 73, 76syl3anbrc 1337 . . . . . . . . 9 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
7833, 77eqeltrd 2911 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
79 imf 14464 . . . . . . . . 9 ℑ:ℂ⟶ℝ
80 ffn 6507 . . . . . . . . 9 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
81 elpreima 6821 . . . . . . . . 9 (ℑ Fn ℂ → (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))))
8279, 80, 81mp2b 10 . . . . . . . 8 (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π)))
8332, 78, 82sylanbrc 585 . . . . . . 7 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)))
84 logrn 25134 . . . . . . 7 ran log = (ℑ “ (-π(,]π))
8583, 84eleqtrrdi 2922 . . . . . 6 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log)
86 logeftb 25159 . . . . . 6 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0 ∧ -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log) → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8726, 31, 85, 86syl3anc 1365 . . . . 5 (𝐴 ∈ ℂ → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8829, 87mpbird 259 . . . 4 (𝐴 ∈ ℂ → (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
8988oveq2d 7164 . . 3 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
90 negicn 10879 . . . 4 -i ∈ ℂ
91 mulneg2 11069 . . . 4 ((-i ∈ ℂ ∧ (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ) → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9290, 11, 91sylancr 589 . . 3 (𝐴 ∈ ℂ → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9389, 92eqtrd 2854 . 2 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
94 asinval 25452 . . 3 (-𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
9519, 94syl 17 . 2 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
96 asinval 25452 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9796negeqd 10872 . 2 (𝐴 ∈ ℂ → -(arcsin‘𝐴) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9893, 95, 973eqtr4d 2864 1 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014   class class class wbr 5057  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530  ici 10531   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cle 10668  cmin 10862  -cneg 10863   / cdiv 11289  2c2 11684  +crp 12381  (,]cioc 12731  cexp 13421  cre 14448  cim 14449  csqrt 14584  expce 15407  πcpi 15412  logclog 25130  arcsincasin 25432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-asin 25435
This theorem is referenced by:  acosneg  25457  sinasin  25459  reasinsin  25466  cosasin  25474  areacirc  34969
  Copyright terms: Public domain W3C validator