Proof of Theorem asinneg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ax-icn 11214 | . . . . . . . . . 10
⊢ i ∈
ℂ | 
| 2 |  | mulcl 11239 | . . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) | 
| 3 | 1, 2 | mpan 690 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) ∈
ℂ) | 
| 4 |  | ax-1cn 11213 | . . . . . . . . . . 11
⊢ 1 ∈
ℂ | 
| 5 |  | sqcl 14158 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈
ℂ) | 
| 6 |  | subcl 11507 | . . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 −
(𝐴↑2)) ∈
ℂ) | 
| 7 | 4, 5, 6 | sylancr 587 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (1
− (𝐴↑2)) ∈
ℂ) | 
| 8 | 7 | sqrtcld 15476 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(√‘(1 − (𝐴↑2))) ∈ ℂ) | 
| 9 | 3, 8 | addcld 11280 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℂ) | 
| 10 |  | asinlem 26911 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ≠ 0) | 
| 11 | 9, 10 | logcld 26612 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))) ∈
ℂ) | 
| 12 |  | efneg 16134 | . . . . . . 7
⊢
((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ
→ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 /
(exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 13 | 11, 12 | syl 17 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 /
(exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 14 |  | eflog 26618 | . . . . . . . 8
⊢ ((((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ≠ 0) →
(exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i ·
𝐴) + (√‘(1
− (𝐴↑2))))) | 
| 15 | 9, 10, 14 | syl2anc 584 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
(exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i ·
𝐴) + (√‘(1
− (𝐴↑2))))) | 
| 16 | 15 | oveq2d 7447 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (1 /
(exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) = (1 / ((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))))) | 
| 17 |  | asinlem2 26912 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 −
(-𝐴↑2))))) =
1) | 
| 18 | 4 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → 1 ∈
ℂ) | 
| 19 |  | negcl 11508 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) | 
| 20 |  | mulcl 11239 | . . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ -𝐴
∈ ℂ) → (i · -𝐴) ∈ ℂ) | 
| 21 | 1, 19, 20 | sylancr 587 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (i
· -𝐴) ∈
ℂ) | 
| 22 | 19 | sqcld 14184 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) ∈
ℂ) | 
| 23 |  | subcl 11507 | . . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 −
(-𝐴↑2)) ∈
ℂ) | 
| 24 | 4, 22, 23 | sylancr 587 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (1
− (-𝐴↑2)) ∈
ℂ) | 
| 25 | 24 | sqrtcld 15476 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(√‘(1 − (-𝐴↑2))) ∈ ℂ) | 
| 26 | 21, 25 | addcld 11280 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((i
· -𝐴) +
(√‘(1 − (-𝐴↑2)))) ∈ ℂ) | 
| 27 | 18, 9, 26, 10 | divmuld 12065 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → ((1 / ((i
· 𝐴) +
(√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 −
(-𝐴↑2)))) ↔ (((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 −
(-𝐴↑2))))) =
1)) | 
| 28 | 17, 27 | mpbird 257 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (1 / ((i
· 𝐴) +
(√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 −
(-𝐴↑2))))) | 
| 29 | 13, 16, 28 | 3eqtrd 2781 | . . . . 5
⊢ (𝐴 ∈ ℂ →
(exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i ·
-𝐴) + (√‘(1
− (-𝐴↑2))))) | 
| 30 |  | asinlem 26911 | . . . . . . 7
⊢ (-𝐴 ∈ ℂ → ((i
· -𝐴) +
(√‘(1 − (-𝐴↑2)))) ≠ 0) | 
| 31 | 19, 30 | syl 17 | . . . . . 6
⊢ (𝐴 ∈ ℂ → ((i
· -𝐴) +
(√‘(1 − (-𝐴↑2)))) ≠ 0) | 
| 32 | 11 | negcld 11607 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ →
-(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))) ∈
ℂ) | 
| 33 | 11 | imnegd 15249 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) =
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 34 | 11 | imcld 15234 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
ℝ) | 
| 35 | 34 | renegcld 11690 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
ℝ) | 
| 36 |  | pire 26500 | . . . . . . . . . . . . 13
⊢ π
∈ ℝ | 
| 37 | 36 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → π
∈ ℝ) | 
| 38 | 9, 10 | logimcld 26613 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (-π
< (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π)) | 
| 39 | 38 | simprd 495 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π) | 
| 40 | 9 | renegd 15248 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
(ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) =
-(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | 
| 41 |  | asinlem3 26914 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → 0 ≤
(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | 
| 42 | 9 | recld 15233 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ →
(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈
ℝ) | 
| 43 | 42 | le0neg2d 11835 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → (0 ≤
(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔
-(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤
0)) | 
| 44 | 41, 43 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
-(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤
0) | 
| 45 | 40, 44 | eqbrtrd 5165 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
(ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤
0) | 
| 46 | 9 | negcld 11607 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → -((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℂ) | 
| 47 | 46 | recld 15233 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
(ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈
ℝ) | 
| 48 |  | 0re 11263 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ | 
| 49 |  | lenlt 11339 | . . . . . . . . . . . . . . . 16
⊢
(((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ
∧ 0 ∈ ℝ) → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬
0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 50 | 47, 48, 49 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬
0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 51 | 45, 50 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → ¬ 0
< (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | 
| 52 |  | lognegb 26632 | . . . . . . . . . . . . . . . . 17
⊢ ((((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ≠ 0) → (-((i ·
𝐴) + (√‘(1
− (𝐴↑2))))
∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) =
π)) | 
| 53 | 9, 10, 52 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (-((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ+
↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) =
π)) | 
| 54 |  | rpgt0 13047 | . . . . . . . . . . . . . . . . 17
⊢ (-((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ+
→ 0 < -((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | 
| 55 |  | rpre 13043 | . . . . . . . . . . . . . . . . . 18
⊢ (-((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ+
→ -((i · 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ) | 
| 56 | 55 | rered 15263 | . . . . . . . . . . . . . . . . 17
⊢ (-((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ+
→ (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -((i ·
𝐴) + (√‘(1
− (𝐴↑2))))) | 
| 57 | 54, 56 | breqtrrd 5171 | . . . . . . . . . . . . . . . 16
⊢ (-((i
· 𝐴) +
(√‘(1 − (𝐴↑2)))) ∈ ℝ+
→ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | 
| 58 | 53, 57 | biimtrrdi 254 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π → 0
< (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 59 | 58 | necon3bd 2954 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (¬ 0
< (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) →
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠
π)) | 
| 60 | 51, 59 | mpd 15 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ →
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠
π) | 
| 61 | 60 | necomd 2996 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → π ≠
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 62 | 34, 37, 39, 61 | leneltd 11415 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) <
π) | 
| 63 |  | ltneg 11763 | . . . . . . . . . . . 12
⊢
(((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ
∧ π ∈ ℝ) → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) < π
↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 64 | 34, 36, 63 | sylancl 586 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔
-π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 65 | 62, 64 | mpbid 232 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → -π
< -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 66 | 38 | simpld 494 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → -π
< (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 67 | 36 | renegcli 11570 | . . . . . . . . . . . . 13
⊢ -π
∈ ℝ | 
| 68 |  | ltle 11349 | . . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
→ (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 69 | 67, 34, 68 | sylancr 587 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (-π
< (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤
(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | 
| 70 | 66, 69 | mpd 15 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → -π
≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 71 |  | lenegcon1 11767 | . . . . . . . . . . . 12
⊢ ((π
∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
→ (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π)) | 
| 72 | 36, 34, 71 | sylancr 587 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (-π
≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π)) | 
| 73 | 70, 72 | mpbid 232 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π) | 
| 74 | 67 | rexri 11319 | . . . . . . . . . . 11
⊢ -π
∈ ℝ* | 
| 75 |  | elioc2 13450 | . . . . . . . . . . 11
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ) →
(-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) ∈
ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) ∧
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π))) | 
| 76 | 74, 36, 75 | mp2an 692 | . . . . . . . . . 10
⊢
(-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) ∈
ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 −
(𝐴↑2)))))) ∧
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤
π)) | 
| 77 | 35, 65, 73, 76 | syl3anbrc 1344 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π)) | 
| 78 | 33, 77 | eqeltrd 2841 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π)) | 
| 79 |  | imf 15152 | . . . . . . . . 9
⊢
ℑ:ℂ⟶ℝ | 
| 80 |  | ffn 6736 | . . . . . . . . 9
⊢
(ℑ:ℂ⟶ℝ → ℑ Fn
ℂ) | 
| 81 |  | elpreima 7078 | . . . . . . . . 9
⊢ (ℑ
Fn ℂ → (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (◡ℑ “ (-π(,]π)) ↔
(-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ
∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π)))) | 
| 82 | 79, 80, 81 | mp2b 10 | . . . . . . . 8
⊢
(-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (◡ℑ “ (-π(,]π)) ↔
(-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ
∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈
(-π(,]π))) | 
| 83 | 32, 78, 82 | sylanbrc 583 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
-(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))) ∈ (◡ℑ “
(-π(,]π))) | 
| 84 |  | logrn 26600 | . . . . . . 7
⊢ ran log =
(◡ℑ “
(-π(,]π)) | 
| 85 | 83, 84 | eleqtrrdi 2852 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
-(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))) ∈ ran
log) | 
| 86 |  | logeftb 26625 | . . . . . 6
⊢ ((((i
· -𝐴) +
(√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i
· -𝐴) +
(√‘(1 − (-𝐴↑2)))) ≠ 0 ∧ -(log‘((i
· 𝐴) +
(√‘(1 − (𝐴↑2))))) ∈ ran log) →
((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i
· 𝐴) +
(√‘(1 − (𝐴↑2))))) ↔
(exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i ·
-𝐴) + (√‘(1
− (-𝐴↑2)))))) | 
| 87 | 26, 31, 85, 86 | syl3anc 1373 | . . . . 5
⊢ (𝐴 ∈ ℂ →
((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i
· 𝐴) +
(√‘(1 − (𝐴↑2))))) ↔
(exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i ·
-𝐴) + (√‘(1
− (-𝐴↑2)))))) | 
| 88 | 29, 87 | mpbird 257 | . . . 4
⊢ (𝐴 ∈ ℂ →
(log‘((i · -𝐴)
+ (√‘(1 − (-𝐴↑2))))) = -(log‘((i ·
𝐴) + (√‘(1
− (𝐴↑2)))))) | 
| 89 | 88 | oveq2d 7447 | . . 3
⊢ (𝐴 ∈ ℂ → (-i
· (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (-i ·
-(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))))) | 
| 90 |  | negicn 11509 | . . . 4
⊢ -i ∈
ℂ | 
| 91 |  | mulneg2 11700 | . . . 4
⊢ ((-i
∈ ℂ ∧ (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
→ (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i ·
(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))))) | 
| 92 | 90, 11, 91 | sylancr 587 | . . 3
⊢ (𝐴 ∈ ℂ → (-i
· -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i ·
(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))))) | 
| 93 | 89, 92 | eqtrd 2777 | . 2
⊢ (𝐴 ∈ ℂ → (-i
· (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = -(-i ·
(log‘((i · 𝐴)
+ (√‘(1 − (𝐴↑2))))))) | 
| 94 |  | asinval 26925 | . . 3
⊢ (-𝐴 ∈ ℂ →
(arcsin‘-𝐴) = (-i
· (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) | 
| 95 | 19, 94 | syl 17 | . 2
⊢ (𝐴 ∈ ℂ →
(arcsin‘-𝐴) = (-i
· (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) | 
| 96 |  | asinval 26925 | . . 3
⊢ (𝐴 ∈ ℂ →
(arcsin‘𝐴) = (-i
· (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 97 | 96 | negeqd 11502 | . 2
⊢ (𝐴 ∈ ℂ →
-(arcsin‘𝐴) = -(-i
· (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | 
| 98 | 93, 95, 97 | 3eqtr4d 2787 | 1
⊢ (𝐴 ∈ ℂ →
(arcsin‘-𝐴) =
-(arcsin‘𝐴)) |