MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinneg Structured version   Visualization version   GIF version

Theorem asinneg 26036
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinneg (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))

Proof of Theorem asinneg
StepHypRef Expression
1 ax-icn 10930 . . . . . . . . . 10 i ∈ ℂ
2 mulcl 10955 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 687 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10929 . . . . . . . . . . 11 1 ∈ ℂ
5 sqcl 13838 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11220 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15149 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcld 10994 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
10 asinlem 26018 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
119, 10logcld 25726 . . . . . . 7 (𝐴 ∈ ℂ → (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
12 efneg 15807 . . . . . . 7 ((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
14 eflog 25732 . . . . . . . 8 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
159, 10, 14syl2anc 584 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1615oveq2d 7291 . . . . . 6 (𝐴 ∈ ℂ → (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) = (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
17 asinlem2 26019 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
184a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℂ)
19 negcl 11221 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
20 mulcl 10955 . . . . . . . . . 10 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
211, 19, 20sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
2219sqcld 13862 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-𝐴↑2) ∈ ℂ)
23 subcl 11220 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
244, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) ∈ ℂ)
2524sqrtcld 15149 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
2621, 25addcld 10994 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
2718, 9, 26, 10divmuld 11773 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ↔ (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1))
2817, 27mpbird 256 . . . . . 6 (𝐴 ∈ ℂ → (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2913, 16, 283eqtrd 2782 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
30 asinlem 26018 . . . . . . 7 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3119, 30syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3211negcld 11319 . . . . . . . 8 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
3311imnegd 14921 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
3411imcld 14906 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
3534renegcld 11402 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
36 pire 25615 . . . . . . . . . . . . 13 π ∈ ℝ
3736a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ∈ ℝ)
389, 10logimcld 25727 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
3938simprd 496 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
409renegd 14920 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
41 asinlem3 26021 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
429recld 14905 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
4342le0neg2d 11547 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0))
4441, 43mpbid 231 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
4540, 44eqbrtrd 5096 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
469negcld 11319 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
4746recld 14905 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
48 0re 10977 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
49 lenlt 11053 . . . . . . . . . . . . . . . 16 (((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5047, 48, 49sylancl 586 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5145, 50mpbid 231 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
52 lognegb 25745 . . . . . . . . . . . . . . . . 17 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
539, 10, 52syl2anc 584 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
54 rpgt0 12742 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
55 rpre 12738 . . . . . . . . . . . . . . . . . 18 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ)
5655rered 14935 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5754, 56breqtrrd 5102 . . . . . . . . . . . . . . . 16 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
5853, 57syl6bir 253 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5958necon3bd 2957 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π))
6051, 59mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π)
6160necomd 2999 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ≠ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6234, 37, 39, 61leneltd 11129 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π)
63 ltneg 11475 . . . . . . . . . . . 12 (((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6434, 36, 63sylancl 586 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6562, 64mpbid 231 . . . . . . . . . 10 (𝐴 ∈ ℂ → -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6638simpld 495 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6736renegcli 11282 . . . . . . . . . . . . 13 -π ∈ ℝ
68 ltle 11063 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6967, 34, 68sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
7066, 69mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
71 lenegcon1 11479 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7236, 34, 71sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7370, 72mpbid 231 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
7467rexri 11033 . . . . . . . . . . 11 -π ∈ ℝ*
75 elioc2 13142 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)))
7674, 36, 75mp2an 689 . . . . . . . . . 10 (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7735, 65, 73, 76syl3anbrc 1342 . . . . . . . . 9 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
7833, 77eqeltrd 2839 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
79 imf 14824 . . . . . . . . 9 ℑ:ℂ⟶ℝ
80 ffn 6600 . . . . . . . . 9 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
81 elpreima 6935 . . . . . . . . 9 (ℑ Fn ℂ → (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))))
8279, 80, 81mp2b 10 . . . . . . . 8 (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π)))
8332, 78, 82sylanbrc 583 . . . . . . 7 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)))
84 logrn 25714 . . . . . . 7 ran log = (ℑ “ (-π(,]π))
8583, 84eleqtrrdi 2850 . . . . . 6 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log)
86 logeftb 25739 . . . . . 6 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0 ∧ -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log) → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8726, 31, 85, 86syl3anc 1370 . . . . 5 (𝐴 ∈ ℂ → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8829, 87mpbird 256 . . . 4 (𝐴 ∈ ℂ → (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
8988oveq2d 7291 . . 3 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
90 negicn 11222 . . . 4 -i ∈ ℂ
91 mulneg2 11412 . . . 4 ((-i ∈ ℂ ∧ (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ) → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9290, 11, 91sylancr 587 . . 3 (𝐴 ∈ ℂ → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9389, 92eqtrd 2778 . 2 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
94 asinval 26032 . . 3 (-𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
9519, 94syl 17 . 2 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
96 asinval 26032 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9796negeqd 11215 . 2 (𝐴 ∈ ℂ → -(arcsin‘𝐴) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9893, 95, 973eqtr4d 2788 1 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,]cioc 13080  cexp 13782  cre 14808  cim 14809  csqrt 14944  expce 15771  πcpi 15776  logclog 25710  arcsincasin 26012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-asin 26015
This theorem is referenced by:  acosneg  26037  sinasin  26039  reasinsin  26046  cosasin  26054  areacirc  35870
  Copyright terms: Public domain W3C validator