MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinneg Structured version   Visualization version   GIF version

Theorem asinneg 26794
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinneg (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))

Proof of Theorem asinneg
StepHypRef Expression
1 ax-icn 11068 . . . . . . . . . 10 i ∈ ℂ
2 mulcl 11093 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 690 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 11067 . . . . . . . . . . 11 1 ∈ ℂ
5 sqcl 14025 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11362 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15347 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcld 11134 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
10 asinlem 26776 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
119, 10logcld 26477 . . . . . . 7 (𝐴 ∈ ℂ → (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
12 efneg 16007 . . . . . . 7 ((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
14 eflog 26483 . . . . . . . 8 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
159, 10, 14syl2anc 584 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1615oveq2d 7365 . . . . . 6 (𝐴 ∈ ℂ → (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) = (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
17 asinlem2 26777 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
184a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℂ)
19 negcl 11363 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
20 mulcl 11093 . . . . . . . . . 10 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
211, 19, 20sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
2219sqcld 14051 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-𝐴↑2) ∈ ℂ)
23 subcl 11362 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
244, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) ∈ ℂ)
2524sqrtcld 15347 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
2621, 25addcld 11134 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
2718, 9, 26, 10divmuld 11922 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ↔ (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1))
2817, 27mpbird 257 . . . . . 6 (𝐴 ∈ ℂ → (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2913, 16, 283eqtrd 2768 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
30 asinlem 26776 . . . . . . 7 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3119, 30syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3211negcld 11462 . . . . . . . 8 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
3311imnegd 15117 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
3411imcld 15102 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
3534renegcld 11547 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
36 pire 26364 . . . . . . . . . . . . 13 π ∈ ℝ
3736a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ∈ ℝ)
389, 10logimcld 26478 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
3938simprd 495 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
409renegd 15116 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
41 asinlem3 26779 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
429recld 15101 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
4342le0neg2d 11692 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0))
4441, 43mpbid 232 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
4540, 44eqbrtrd 5114 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
469negcld 11462 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
4746recld 15101 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
48 0re 11117 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
49 lenlt 11194 . . . . . . . . . . . . . . . 16 (((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5047, 48, 49sylancl 586 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5145, 50mpbid 232 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
52 lognegb 26497 . . . . . . . . . . . . . . . . 17 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
539, 10, 52syl2anc 584 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
54 rpgt0 12906 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
55 rpre 12902 . . . . . . . . . . . . . . . . . 18 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ)
5655rered 15131 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5754, 56breqtrrd 5120 . . . . . . . . . . . . . . . 16 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
5853, 57biimtrrdi 254 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5958necon3bd 2939 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π))
6051, 59mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π)
6160necomd 2980 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ≠ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6234, 37, 39, 61leneltd 11270 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π)
63 ltneg 11620 . . . . . . . . . . . 12 (((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6434, 36, 63sylancl 586 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6562, 64mpbid 232 . . . . . . . . . 10 (𝐴 ∈ ℂ → -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6638simpld 494 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6736renegcli 11425 . . . . . . . . . . . . 13 -π ∈ ℝ
68 ltle 11204 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6967, 34, 68sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
7066, 69mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
71 lenegcon1 11624 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7236, 34, 71sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7370, 72mpbid 232 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
7467rexri 11173 . . . . . . . . . . 11 -π ∈ ℝ*
75 elioc2 13312 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)))
7674, 36, 75mp2an 692 . . . . . . . . . 10 (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7735, 65, 73, 76syl3anbrc 1344 . . . . . . . . 9 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
7833, 77eqeltrd 2828 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
79 imf 15020 . . . . . . . . 9 ℑ:ℂ⟶ℝ
80 ffn 6652 . . . . . . . . 9 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
81 elpreima 6992 . . . . . . . . 9 (ℑ Fn ℂ → (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))))
8279, 80, 81mp2b 10 . . . . . . . 8 (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π)))
8332, 78, 82sylanbrc 583 . . . . . . 7 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)))
84 logrn 26465 . . . . . . 7 ran log = (ℑ “ (-π(,]π))
8583, 84eleqtrrdi 2839 . . . . . 6 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log)
86 logeftb 26490 . . . . . 6 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0 ∧ -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log) → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8726, 31, 85, 86syl3anc 1373 . . . . 5 (𝐴 ∈ ℂ → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8829, 87mpbird 257 . . . 4 (𝐴 ∈ ℂ → (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
8988oveq2d 7365 . . 3 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
90 negicn 11364 . . . 4 -i ∈ ℂ
91 mulneg2 11557 . . . 4 ((-i ∈ ℂ ∧ (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ) → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9290, 11, 91sylancr 587 . . 3 (𝐴 ∈ ℂ → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9389, 92eqtrd 2764 . 2 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
94 asinval 26790 . . 3 (-𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
9519, 94syl 17 . 2 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
96 asinval 26790 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9796negeqd 11357 . 2 (𝐴 ∈ ℂ → -(arcsin‘𝐴) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9893, 95, 973eqtr4d 2774 1 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  ccnv 5618  ran crn 5620  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  +crp 12893  (,]cioc 13249  cexp 13968  cre 15004  cim 15005  csqrt 15140  expce 15968  πcpi 15973  logclog 26461  arcsincasin 26770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-asin 26773
This theorem is referenced by:  acosneg  26795  sinasin  26797  reasinsin  26804  cosasin  26812  areacirc  37713
  Copyright terms: Public domain W3C validator