MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Structured version   Visualization version   GIF version

Theorem asinsin 25478
Description: The arcsine function composed with sin is equal to the identity. This plus sinasin 25475 allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 25482). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 15471 . . . 4 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
21adantr 484 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
3 asinval 25468 . . 3 ((sin‘𝐴) ∈ ℂ → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
5 ax-icn 10585 . . . . . . . 8 i ∈ ℂ
6 mulcl 10610 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
75, 2, 6sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
8 simpl 486 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
9 mulcl 10610 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
105, 8, 9sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
11 efcl 15428 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
137, 12pncan3d 10989 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (exp‘(i · 𝐴)))
1412, 7subcld 10986 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) ∈ ℂ)
15 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
162sqcld 13504 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘𝐴)↑2) ∈ ℂ)
17 subcl 10874 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
1815, 16, 17sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
19 binom2sub 13577 . . . . . . . . . 10 (((exp‘(i · 𝐴)) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2012, 7, 19syl2anc 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2112sqvald 13503 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
22 2cn 11700 . . . . . . . . . . . . . 14 2 ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
2423, 12, 7mul12d 10838 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴)))) = ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴)))))
2521, 24oveq12d 7153 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
26 coscl 15472 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2726adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
28 subsq 13568 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
2927, 7, 28syl2anc 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
30 sqmul 13481 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
315, 2, 30sylancr 590 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
32 i2 13561 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
3332oveq1i 7145 . . . . . . . . . . . . . . . 16 ((i↑2) · ((sin‘𝐴)↑2)) = (-1 · ((sin‘𝐴)↑2))
3416mulm1d 11081 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3533, 34syl5eq 2845 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i↑2) · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3631, 35eqtrd 2833 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = -((sin‘𝐴)↑2))
3736oveq2d 7151 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)))
3827sqcld 13504 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴)↑2) ∈ ℂ)
3938, 16subnegd 10993 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
4038, 16addcomd 10831 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
4137, 39, 403eqtrd 2837 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
42 efival 15497 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4472timesd 11868 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) = ((i · (sin‘𝐴)) + (i · (sin‘𝐴))))
4543, 44oveq12d 7153 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))))
4627, 7, 7pnpcan2d 11024 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4745, 46eqtrd 2833 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4843, 47oveq12d 7153 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
49 mulcl 10610 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5022, 7, 49sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5112, 12, 50subdid 11085 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5248, 51eqtr3d 2835 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5329, 41, 523eqtr3d 2841 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
54 sincossq 15521 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5554adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5625, 53, 553eqtr2d 2839 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = 1)
5756, 36oveq12d 7153 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)) = (1 + -((sin‘𝐴)↑2)))
58 negsub 10923 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
5915, 16, 58sylancr 590 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
6020, 57, 593eqtrd 2837 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = (1 − ((sin‘𝐴)↑2)))
61 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
6261a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 / 2) ∈ ℝ)
63 negicn 10876 . . . . . . . . . . . . . . 15 -i ∈ ℂ
64 mulcl 10610 . . . . . . . . . . . . . . 15 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
6563, 8, 64sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) ∈ ℂ)
66 efcl 15428 . . . . . . . . . . . . . 14 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) ∈ ℂ)
6812, 67addcld 10649 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
6968recld 14545 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℝ)
70 halfgt0 11841 . . . . . . . . . . . 12 0 < (1 / 2)
7170a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (1 / 2))
7212recld 14545 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) ∈ ℝ)
7367recld 14545 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) ∈ ℝ)
74 asinsinlem 25477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
75 negcl 10875 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7675adantr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
77 reneg 14476 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7877adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
79 halfpire 25057 . . . . . . . . . . . . . . . . . . . 20 (π / 2) ∈ ℝ
8079renegcli 10936 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
81 recl 14461 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
82 iooneg 12849 . . . . . . . . . . . . . . . . . . 19 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8380, 79, 81, 82mp3an12i 1462 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8483biimpa 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))
8579recni 10644 . . . . . . . . . . . . . . . . . . 19 (π / 2) ∈ ℂ
8685negnegi 10945 . . . . . . . . . . . . . . . . . 18 --(π / 2) = (π / 2)
8786oveq2i 7146 . . . . . . . . . . . . . . . . 17 (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2))
8884, 87eleqtrdi 2900 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
8978, 88eqeltrd 2890 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2)))
90 asinsinlem 25477 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
9176, 89, 90syl2anc 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
92 mulneg12 11067 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
935, 8, 92sylancr 590 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) = (i · -𝐴))
9493fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
9594fveq2d 6649 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) = (ℜ‘(exp‘(i · -𝐴))))
9691, 95breqtrrd 5058 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(-i · 𝐴))))
9772, 73, 74, 96addgt0d 11204 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9812, 67readdd 14565 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9997, 98breqtrrd 5058 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
10062, 69, 71, 99mulgt0d 10784 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
101 cosval 15468 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
102101adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
103 2ne0 11729 . . . . . . . . . . . . . . 15 2 ≠ 0
104103a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ≠ 0)
10568, 23, 104divrec2d 11409 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
106102, 105eqtrd 2833 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
107106fveq2d 6649 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
108 remul2 14481 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
10961, 68, 108sylancr 590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
110107, 109eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
111100, 110breqtrrd 5058 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(cos‘𝐴)))
11227, 7, 43mvrraddd 11041 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (cos‘𝐴))
113112fveq2d 6649 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (ℜ‘(cos‘𝐴)))
114111, 113breqtrrd 5058 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))))
11514, 18, 60, 114eqsqrt2d 14720 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (√‘(1 − ((sin‘𝐴)↑2))))
116115oveq2d 7151 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
11713, 116eqtr3d 2835 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
118117fveq2d 6649 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))))
119 pire 25051 . . . . . . . . . 10 π ∈ ℝ
120119renegcli 10936 . . . . . . . . 9 -π ∈ ℝ
121120a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
12280a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) ∈ ℝ)
123 elioore 12756 . . . . . . . . 9 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ ℝ)
124123adantl 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
125 pirp 25054 . . . . . . . . . . 11 π ∈ ℝ+
126 rphalflt 12406 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) < π)
127125, 126ax-mp 5 . . . . . . . . . 10 (π / 2) < π
12879, 119ltnegi 11173 . . . . . . . . . 10 ((π / 2) < π ↔ -π < -(π / 2))
129127, 128mpbi 233 . . . . . . . . 9 -π < -(π / 2)
130129a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < -(π / 2))
131 eliooord 12784 . . . . . . . . . 10 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
132131adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
133132simpld 498 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
134121, 122, 124, 130, 133lttrd 10790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℜ‘𝐴))
135 imre 14459 . . . . . . . . 9 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
13610, 135syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1375, 5mulneg1i 11075 . . . . . . . . . . . 12 (-i · i) = -(i · i)
138 ixi 11258 . . . . . . . . . . . . 13 (i · i) = -1
139138negeqi 10868 . . . . . . . . . . . 12 -(i · i) = --1
14015negnegi 10945 . . . . . . . . . . . 12 --1 = 1
141137, 139, 1403eqtri 2825 . . . . . . . . . . 11 (-i · i) = 1
142141oveq1i 7145 . . . . . . . . . 10 ((-i · i) · 𝐴) = (1 · 𝐴)
14363a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
1445a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
145143, 144, 8mulassd 10653 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
146 mulid2 10629 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
147146adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
148142, 145, 1473eqtr3a 2857 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
149148fveq2d 6649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
150136, 149eqtrd 2833 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
151134, 150breqtrrd 5058 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(i · 𝐴)))
152119a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
15379a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) ∈ ℝ)
154132simprd 499 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
155127a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) < π)
156124, 153, 152, 154, 155lttrd 10790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < π)
157124, 152, 156ltled 10777 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ≤ π)
158150, 157eqbrtrd 5052 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ≤ π)
159 ellogrn 25151 . . . . . 6 ((i · 𝐴) ∈ ran log ↔ ((i · 𝐴) ∈ ℂ ∧ -π < (ℑ‘(i · 𝐴)) ∧ (ℑ‘(i · 𝐴)) ≤ π))
16010, 151, 158, 159syl3anbrc 1340 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ran log)
161 logef 25173 . . . . 5 ((i · 𝐴) ∈ ran log → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
162160, 161syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
163118, 162eqtr3d 2835 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))) = (i · 𝐴))
164163oveq2d 7151 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))) = (-i · (i · 𝐴)))
1654, 164, 1483eqtrd 2837 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  ran crn 5520  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  cexp 13425  cre 14448  cim 14449  csqrt 14584  expce 15407  sincsin 15409  cosccos 15410  πcpi 15412  logclog 25146  arcsincasin 25448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-asin 25451
This theorem is referenced by:  acoscos  25479  reasinsin  25482  asinsinb  25483
  Copyright terms: Public domain W3C validator