MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Structured version   Visualization version   GIF version

Theorem asinsin 26633
Description: The arcsine function composed with sin is equal to the identity. This plus sinasin 26630 allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (Ο€ / 2) βˆ’ i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 βˆ’ (Ο€ / 2). In particular, when restricted to reals this identity extends to the closed interval [-(Ο€ / 2), (Ο€ / 2)], not just the open interval (see reasinsin 26637). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (arcsinβ€˜(sinβ€˜π΄)) = 𝐴)

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 16073 . . . 4 (𝐴 ∈ β„‚ β†’ (sinβ€˜π΄) ∈ β„‚)
21adantr 479 . . 3 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (sinβ€˜π΄) ∈ β„‚)
3 asinval 26623 . . 3 ((sinβ€˜π΄) ∈ β„‚ β†’ (arcsinβ€˜(sinβ€˜π΄)) = (-i Β· (logβ€˜((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2)))))))
42, 3syl 17 . 2 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (arcsinβ€˜(sinβ€˜π΄)) = (-i Β· (logβ€˜((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2)))))))
5 ax-icn 11171 . . . . . . . 8 i ∈ β„‚
6 mulcl 11196 . . . . . . . 8 ((i ∈ β„‚ ∧ (sinβ€˜π΄) ∈ β„‚) β†’ (i Β· (sinβ€˜π΄)) ∈ β„‚)
75, 2, 6sylancr 585 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (i Β· (sinβ€˜π΄)) ∈ β„‚)
8 simpl 481 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 𝐴 ∈ β„‚)
9 mulcl 11196 . . . . . . . . 9 ((i ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (i Β· 𝐴) ∈ β„‚)
105, 8, 9sylancr 585 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (i Β· 𝐴) ∈ β„‚)
11 efcl 16030 . . . . . . . 8 ((i Β· 𝐴) ∈ β„‚ β†’ (expβ€˜(i Β· 𝐴)) ∈ β„‚)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (expβ€˜(i Β· 𝐴)) ∈ β„‚)
137, 12pncan3d 11578 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((i Β· (sinβ€˜π΄)) + ((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))) = (expβ€˜(i Β· 𝐴)))
1412, 7subcld 11575 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄))) ∈ β„‚)
15 ax-1cn 11170 . . . . . . . . 9 1 ∈ β„‚
162sqcld 14113 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((sinβ€˜π΄)↑2) ∈ β„‚)
17 subcl 11463 . . . . . . . . 9 ((1 ∈ β„‚ ∧ ((sinβ€˜π΄)↑2) ∈ β„‚) β†’ (1 βˆ’ ((sinβ€˜π΄)↑2)) ∈ β„‚)
1815, 16, 17sylancr 585 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (1 βˆ’ ((sinβ€˜π΄)↑2)) ∈ β„‚)
19 binom2sub 14187 . . . . . . . . . 10 (((expβ€˜(i Β· 𝐴)) ∈ β„‚ ∧ (i Β· (sinβ€˜π΄)) ∈ β„‚) β†’ (((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))↑2) = ((((expβ€˜(i Β· 𝐴))↑2) βˆ’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄))))) + ((i Β· (sinβ€˜π΄))↑2)))
2012, 7, 19syl2anc 582 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))↑2) = ((((expβ€˜(i Β· 𝐴))↑2) βˆ’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄))))) + ((i Β· (sinβ€˜π΄))↑2)))
2112sqvald 14112 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴))↑2) = ((expβ€˜(i Β· 𝐴)) Β· (expβ€˜(i Β· 𝐴))))
22 2cn 12291 . . . . . . . . . . . . . 14 2 ∈ β„‚
2322a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 2 ∈ β„‚)
2423, 12, 7mul12d 11427 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄)))) = ((expβ€˜(i Β· 𝐴)) Β· (2 Β· (i Β· (sinβ€˜π΄)))))
2521, 24oveq12d 7429 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((expβ€˜(i Β· 𝐴))↑2) βˆ’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄))))) = (((expβ€˜(i Β· 𝐴)) Β· (expβ€˜(i Β· 𝐴))) βˆ’ ((expβ€˜(i Β· 𝐴)) Β· (2 Β· (i Β· (sinβ€˜π΄))))))
26 coscl 16074 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (cosβ€˜π΄) ∈ β„‚)
2726adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (cosβ€˜π΄) ∈ β„‚)
28 subsq 14178 . . . . . . . . . . . . 13 (((cosβ€˜π΄) ∈ β„‚ ∧ (i Β· (sinβ€˜π΄)) ∈ β„‚) β†’ (((cosβ€˜π΄)↑2) βˆ’ ((i Β· (sinβ€˜π΄))↑2)) = (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) Β· ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄)))))
2927, 7, 28syl2anc 582 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄)↑2) βˆ’ ((i Β· (sinβ€˜π΄))↑2)) = (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) Β· ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄)))))
30 sqmul 14088 . . . . . . . . . . . . . . . 16 ((i ∈ β„‚ ∧ (sinβ€˜π΄) ∈ β„‚) β†’ ((i Β· (sinβ€˜π΄))↑2) = ((i↑2) Β· ((sinβ€˜π΄)↑2)))
315, 2, 30sylancr 585 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((i Β· (sinβ€˜π΄))↑2) = ((i↑2) Β· ((sinβ€˜π΄)↑2)))
32 i2 14170 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
3332oveq1i 7421 . . . . . . . . . . . . . . . 16 ((i↑2) Β· ((sinβ€˜π΄)↑2)) = (-1 Β· ((sinβ€˜π΄)↑2))
3416mulm1d 11670 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-1 Β· ((sinβ€˜π΄)↑2)) = -((sinβ€˜π΄)↑2))
3533, 34eqtrid 2782 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((i↑2) Β· ((sinβ€˜π΄)↑2)) = -((sinβ€˜π΄)↑2))
3631, 35eqtrd 2770 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((i Β· (sinβ€˜π΄))↑2) = -((sinβ€˜π΄)↑2))
3736oveq2d 7427 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄)↑2) βˆ’ ((i Β· (sinβ€˜π΄))↑2)) = (((cosβ€˜π΄)↑2) βˆ’ -((sinβ€˜π΄)↑2)))
3827sqcld 14113 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((cosβ€˜π΄)↑2) ∈ β„‚)
3938, 16subnegd 11582 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄)↑2) βˆ’ -((sinβ€˜π΄)↑2)) = (((cosβ€˜π΄)↑2) + ((sinβ€˜π΄)↑2)))
4038, 16addcomd 11420 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄)↑2) + ((sinβ€˜π΄)↑2)) = (((sinβ€˜π΄)↑2) + ((cosβ€˜π΄)↑2)))
4137, 39, 403eqtrd 2774 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄)↑2) βˆ’ ((i Β· (sinβ€˜π΄))↑2)) = (((sinβ€˜π΄)↑2) + ((cosβ€˜π΄)↑2)))
42 efival 16099 . . . . . . . . . . . . . . 15 (𝐴 ∈ β„‚ β†’ (expβ€˜(i Β· 𝐴)) = ((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))))
4342adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (expβ€˜(i Β· 𝐴)) = ((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))))
4472timesd 12459 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (2 Β· (i Β· (sinβ€˜π΄))) = ((i Β· (sinβ€˜π΄)) + (i Β· (sinβ€˜π΄))))
4543, 44oveq12d 7429 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) βˆ’ (2 Β· (i Β· (sinβ€˜π΄)))) = (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) βˆ’ ((i Β· (sinβ€˜π΄)) + (i Β· (sinβ€˜π΄)))))
4627, 7, 7pnpcan2d 11613 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) βˆ’ ((i Β· (sinβ€˜π΄)) + (i Β· (sinβ€˜π΄)))) = ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄))))
4745, 46eqtrd 2770 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) βˆ’ (2 Β· (i Β· (sinβ€˜π΄)))) = ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄))))
4843, 47oveq12d 7429 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) Β· ((expβ€˜(i Β· 𝐴)) βˆ’ (2 Β· (i Β· (sinβ€˜π΄))))) = (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) Β· ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄)))))
49 mulcl 11196 . . . . . . . . . . . . . . 15 ((2 ∈ β„‚ ∧ (i Β· (sinβ€˜π΄)) ∈ β„‚) β†’ (2 Β· (i Β· (sinβ€˜π΄))) ∈ β„‚)
5022, 7, 49sylancr 585 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (2 Β· (i Β· (sinβ€˜π΄))) ∈ β„‚)
5112, 12, 50subdid 11674 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) Β· ((expβ€˜(i Β· 𝐴)) βˆ’ (2 Β· (i Β· (sinβ€˜π΄))))) = (((expβ€˜(i Β· 𝐴)) Β· (expβ€˜(i Β· 𝐴))) βˆ’ ((expβ€˜(i Β· 𝐴)) Β· (2 Β· (i Β· (sinβ€˜π΄))))))
5248, 51eqtr3d 2772 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((cosβ€˜π΄) + (i Β· (sinβ€˜π΄))) Β· ((cosβ€˜π΄) βˆ’ (i Β· (sinβ€˜π΄)))) = (((expβ€˜(i Β· 𝐴)) Β· (expβ€˜(i Β· 𝐴))) βˆ’ ((expβ€˜(i Β· 𝐴)) Β· (2 Β· (i Β· (sinβ€˜π΄))))))
5329, 41, 523eqtr3d 2778 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((sinβ€˜π΄)↑2) + ((cosβ€˜π΄)↑2)) = (((expβ€˜(i Β· 𝐴)) Β· (expβ€˜(i Β· 𝐴))) βˆ’ ((expβ€˜(i Β· 𝐴)) Β· (2 Β· (i Β· (sinβ€˜π΄))))))
54 sincossq 16123 . . . . . . . . . . . 12 (𝐴 ∈ β„‚ β†’ (((sinβ€˜π΄)↑2) + ((cosβ€˜π΄)↑2)) = 1)
5554adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((sinβ€˜π΄)↑2) + ((cosβ€˜π΄)↑2)) = 1)
5625, 53, 553eqtr2d 2776 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((expβ€˜(i Β· 𝐴))↑2) βˆ’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄))))) = 1)
5756, 36oveq12d 7429 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((((expβ€˜(i Β· 𝐴))↑2) βˆ’ (2 Β· ((expβ€˜(i Β· 𝐴)) Β· (i Β· (sinβ€˜π΄))))) + ((i Β· (sinβ€˜π΄))↑2)) = (1 + -((sinβ€˜π΄)↑2)))
58 negsub 11512 . . . . . . . . . 10 ((1 ∈ β„‚ ∧ ((sinβ€˜π΄)↑2) ∈ β„‚) β†’ (1 + -((sinβ€˜π΄)↑2)) = (1 βˆ’ ((sinβ€˜π΄)↑2)))
5915, 16, 58sylancr 585 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (1 + -((sinβ€˜π΄)↑2)) = (1 βˆ’ ((sinβ€˜π΄)↑2)))
6020, 57, 593eqtrd 2774 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))↑2) = (1 βˆ’ ((sinβ€˜π΄)↑2)))
61 halfre 12430 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
6261a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (1 / 2) ∈ ℝ)
63 negicn 11465 . . . . . . . . . . . . . . 15 -i ∈ β„‚
64 mulcl 11196 . . . . . . . . . . . . . . 15 ((-i ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (-i Β· 𝐴) ∈ β„‚)
6563, 8, 64sylancr 585 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-i Β· 𝐴) ∈ β„‚)
66 efcl 16030 . . . . . . . . . . . . . 14 ((-i Β· 𝐴) ∈ β„‚ β†’ (expβ€˜(-i Β· 𝐴)) ∈ β„‚)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (expβ€˜(-i Β· 𝐴)) ∈ β„‚)
6812, 67addcld 11237 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))) ∈ β„‚)
6968recld 15145 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴)))) ∈ ℝ)
70 halfgt0 12432 . . . . . . . . . . . 12 0 < (1 / 2)
7170a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (1 / 2))
7212recld 15145 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(expβ€˜(i Β· 𝐴))) ∈ ℝ)
7367recld 15145 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(expβ€˜(-i Β· 𝐴))) ∈ ℝ)
74 asinsinlem 26632 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜(expβ€˜(i Β· 𝐴))))
75 negcl 11464 . . . . . . . . . . . . . . . 16 (𝐴 ∈ β„‚ β†’ -𝐴 ∈ β„‚)
7675adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -𝐴 ∈ β„‚)
77 reneg 15076 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ β„‚ β†’ (β„œβ€˜-𝐴) = -(β„œβ€˜π΄))
7877adantr 479 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜-𝐴) = -(β„œβ€˜π΄))
79 halfpire 26210 . . . . . . . . . . . . . . . . . . . 20 (Ο€ / 2) ∈ ℝ
8079renegcli 11525 . . . . . . . . . . . . . . . . . . 19 -(Ο€ / 2) ∈ ℝ
81 recl 15061 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ β„‚ β†’ (β„œβ€˜π΄) ∈ ℝ)
82 iooneg 13452 . . . . . . . . . . . . . . . . . . 19 ((-(Ο€ / 2) ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ ∧ (β„œβ€˜π΄) ∈ ℝ) β†’ ((β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) ↔ -(β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)--(Ο€ / 2))))
8380, 79, 81, 82mp3an12i 1463 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ β„‚ β†’ ((β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) ↔ -(β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)--(Ο€ / 2))))
8483biimpa 475 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -(β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)--(Ο€ / 2)))
8579recni 11232 . . . . . . . . . . . . . . . . . . 19 (Ο€ / 2) ∈ β„‚
8685negnegi 11534 . . . . . . . . . . . . . . . . . 18 --(Ο€ / 2) = (Ο€ / 2)
8786oveq2i 7422 . . . . . . . . . . . . . . . . 17 (-(Ο€ / 2)(,)--(Ο€ / 2)) = (-(Ο€ / 2)(,)(Ο€ / 2))
8884, 87eleqtrdi 2841 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -(β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)))
8978, 88eqeltrd 2831 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜-𝐴) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)))
90 asinsinlem 26632 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ β„‚ ∧ (β„œβ€˜-𝐴) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜(expβ€˜(i Β· -𝐴))))
9176, 89, 90syl2anc 582 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜(expβ€˜(i Β· -𝐴))))
92 mulneg12 11656 . . . . . . . . . . . . . . . . 17 ((i ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (-i Β· 𝐴) = (i Β· -𝐴))
935, 8, 92sylancr 585 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-i Β· 𝐴) = (i Β· -𝐴))
9493fveq2d 6894 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (expβ€˜(-i Β· 𝐴)) = (expβ€˜(i Β· -𝐴)))
9594fveq2d 6894 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(expβ€˜(-i Β· 𝐴))) = (β„œβ€˜(expβ€˜(i Β· -𝐴))))
9691, 95breqtrrd 5175 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜(expβ€˜(-i Β· 𝐴))))
9772, 73, 74, 96addgt0d 11793 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < ((β„œβ€˜(expβ€˜(i Β· 𝐴))) + (β„œβ€˜(expβ€˜(-i Β· 𝐴)))))
9812, 67readdd 15165 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴)))) = ((β„œβ€˜(expβ€˜(i Β· 𝐴))) + (β„œβ€˜(expβ€˜(-i Β· 𝐴)))))
9997, 98breqtrrd 5175 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴)))))
10062, 69, 71, 99mulgt0d 11373 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < ((1 / 2) Β· (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))))
101 cosval 16070 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‚ β†’ (cosβ€˜π΄) = (((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))) / 2))
102101adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (cosβ€˜π΄) = (((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))) / 2))
103 2ne0 12320 . . . . . . . . . . . . . . 15 2 β‰  0
104103a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 2 β‰  0)
10568, 23, 104divrec2d 11998 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))) / 2) = ((1 / 2) Β· ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴)))))
106102, 105eqtrd 2770 . . . . . . . . . . . 12 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (cosβ€˜π΄) = ((1 / 2) Β· ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴)))))
107106fveq2d 6894 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(cosβ€˜π΄)) = (β„œβ€˜((1 / 2) Β· ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))))
108 remul2 15081 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))) ∈ β„‚) β†’ (β„œβ€˜((1 / 2) Β· ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))) = ((1 / 2) Β· (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))))
10961, 68, 108sylancr 585 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜((1 / 2) Β· ((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))) = ((1 / 2) Β· (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))))
110107, 109eqtrd 2770 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(cosβ€˜π΄)) = ((1 / 2) Β· (β„œβ€˜((expβ€˜(i Β· 𝐴)) + (expβ€˜(-i Β· 𝐴))))))
111100, 110breqtrrd 5175 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜(cosβ€˜π΄)))
11227, 7, 43mvrraddd 11630 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄))) = (cosβ€˜π΄))
113112fveq2d 6894 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))) = (β„œβ€˜(cosβ€˜π΄)))
114111, 113breqtrrd 5175 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ 0 < (β„œβ€˜((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))))
11514, 18, 60, 114eqsqrt2d 15319 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄))) = (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2))))
116115oveq2d 7427 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((i Β· (sinβ€˜π΄)) + ((expβ€˜(i Β· 𝐴)) βˆ’ (i Β· (sinβ€˜π΄)))) = ((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2)))))
11713, 116eqtr3d 2772 . . . . 5 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (expβ€˜(i Β· 𝐴)) = ((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2)))))
118117fveq2d 6894 . . . 4 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (logβ€˜(expβ€˜(i Β· 𝐴))) = (logβ€˜((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2))))))
119 pire 26204 . . . . . . . . . 10 Ο€ ∈ ℝ
120119renegcli 11525 . . . . . . . . 9 -Ο€ ∈ ℝ
121120a1i 11 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -Ο€ ∈ ℝ)
12280a1i 11 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -(Ο€ / 2) ∈ ℝ)
123 elioore 13358 . . . . . . . . 9 ((β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ (β„œβ€˜π΄) ∈ ℝ)
124123adantl 480 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜π΄) ∈ ℝ)
125 pirp 26207 . . . . . . . . . . 11 Ο€ ∈ ℝ+
126 rphalflt 13007 . . . . . . . . . . 11 (Ο€ ∈ ℝ+ β†’ (Ο€ / 2) < Ο€)
127125, 126ax-mp 5 . . . . . . . . . 10 (Ο€ / 2) < Ο€
12879, 119ltnegi 11762 . . . . . . . . . 10 ((Ο€ / 2) < Ο€ ↔ -Ο€ < -(Ο€ / 2))
129127, 128mpbi 229 . . . . . . . . 9 -Ο€ < -(Ο€ / 2)
130129a1i 11 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -Ο€ < -(Ο€ / 2))
131 eliooord 13387 . . . . . . . . . 10 ((β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ (-(Ο€ / 2) < (β„œβ€˜π΄) ∧ (β„œβ€˜π΄) < (Ο€ / 2)))
132131adantl 480 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-(Ο€ / 2) < (β„œβ€˜π΄) ∧ (β„œβ€˜π΄) < (Ο€ / 2)))
133132simpld 493 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -(Ο€ / 2) < (β„œβ€˜π΄))
134121, 122, 124, 130, 133lttrd 11379 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -Ο€ < (β„œβ€˜π΄))
135 imre 15059 . . . . . . . . 9 ((i Β· 𝐴) ∈ β„‚ β†’ (β„‘β€˜(i Β· 𝐴)) = (β„œβ€˜(-i Β· (i Β· 𝐴))))
13610, 135syl 17 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„‘β€˜(i Β· 𝐴)) = (β„œβ€˜(-i Β· (i Β· 𝐴))))
1375, 5mulneg1i 11664 . . . . . . . . . . . 12 (-i Β· i) = -(i Β· i)
138 ixi 11847 . . . . . . . . . . . . 13 (i Β· i) = -1
139138negeqi 11457 . . . . . . . . . . . 12 -(i Β· i) = --1
14015negnegi 11534 . . . . . . . . . . . 12 --1 = 1
141137, 139, 1403eqtri 2762 . . . . . . . . . . 11 (-i Β· i) = 1
142141oveq1i 7421 . . . . . . . . . 10 ((-i Β· i) Β· 𝐴) = (1 Β· 𝐴)
14363a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -i ∈ β„‚)
1445a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ i ∈ β„‚)
145143, 144, 8mulassd 11241 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ ((-i Β· i) Β· 𝐴) = (-i Β· (i Β· 𝐴)))
146 mullid 11217 . . . . . . . . . . 11 (𝐴 ∈ β„‚ β†’ (1 Β· 𝐴) = 𝐴)
147146adantr 479 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (1 Β· 𝐴) = 𝐴)
148142, 145, 1473eqtr3a 2794 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-i Β· (i Β· 𝐴)) = 𝐴)
149148fveq2d 6894 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜(-i Β· (i Β· 𝐴))) = (β„œβ€˜π΄))
150136, 149eqtrd 2770 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„‘β€˜(i Β· 𝐴)) = (β„œβ€˜π΄))
151134, 150breqtrrd 5175 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ -Ο€ < (β„‘β€˜(i Β· 𝐴)))
152119a1i 11 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ Ο€ ∈ ℝ)
15379a1i 11 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (Ο€ / 2) ∈ ℝ)
154132simprd 494 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜π΄) < (Ο€ / 2))
155127a1i 11 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (Ο€ / 2) < Ο€)
156124, 153, 152, 154, 155lttrd 11379 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜π΄) < Ο€)
157124, 152, 156ltled 11366 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„œβ€˜π΄) ≀ Ο€)
158150, 157eqbrtrd 5169 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (β„‘β€˜(i Β· 𝐴)) ≀ Ο€)
159 ellogrn 26304 . . . . . 6 ((i Β· 𝐴) ∈ ran log ↔ ((i Β· 𝐴) ∈ β„‚ ∧ -Ο€ < (β„‘β€˜(i Β· 𝐴)) ∧ (β„‘β€˜(i Β· 𝐴)) ≀ Ο€))
16010, 151, 158, 159syl3anbrc 1341 . . . . 5 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (i Β· 𝐴) ∈ ran log)
161 logef 26326 . . . . 5 ((i Β· 𝐴) ∈ ran log β†’ (logβ€˜(expβ€˜(i Β· 𝐴))) = (i Β· 𝐴))
162160, 161syl 17 . . . 4 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (logβ€˜(expβ€˜(i Β· 𝐴))) = (i Β· 𝐴))
163118, 162eqtr3d 2772 . . 3 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (logβ€˜((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2))))) = (i Β· 𝐴))
164163oveq2d 7427 . 2 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (-i Β· (logβ€˜((i Β· (sinβ€˜π΄)) + (βˆšβ€˜(1 βˆ’ ((sinβ€˜π΄)↑2)))))) = (-i Β· (i Β· 𝐴)))
1654, 164, 1483eqtrd 2774 1 ((𝐴 ∈ β„‚ ∧ (β„œβ€˜π΄) ∈ (-(Ο€ / 2)(,)(Ο€ / 2))) β†’ (arcsinβ€˜(sinβ€˜π΄)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147  ran crn 5676  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113  ici 11114   + caddc 11115   Β· cmul 11117   < clt 11252   ≀ cle 11253   βˆ’ cmin 11448  -cneg 11449   / cdiv 11875  2c2 12271  β„+crp 12978  (,)cioo 13328  β†‘cexp 14031  β„œcre 15048  β„‘cim 15049  βˆšcsqrt 15184  expce 16009  sincsin 16011  cosccos 16012  Ο€cpi 16014  logclog 26299  arcsincasin 26603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25615  df-dv 25616  df-log 26301  df-asin 26606
This theorem is referenced by:  acoscos  26634  reasinsin  26637  asinsinb  26638
  Copyright terms: Public domain W3C validator