MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Structured version   Visualization version   GIF version

Theorem asinsin 26042
Description: The arcsine function composed with sin is equal to the identity. This plus sinasin 26039 allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 26046). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 15835 . . . 4 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
21adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
3 asinval 26032 . . 3 ((sin‘𝐴) ∈ ℂ → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
5 ax-icn 10930 . . . . . . . 8 i ∈ ℂ
6 mulcl 10955 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
75, 2, 6sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
8 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
9 mulcl 10955 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
105, 8, 9sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
11 efcl 15792 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
137, 12pncan3d 11335 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (exp‘(i · 𝐴)))
1412, 7subcld 11332 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) ∈ ℂ)
15 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
162sqcld 13862 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘𝐴)↑2) ∈ ℂ)
17 subcl 11220 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
1815, 16, 17sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
19 binom2sub 13935 . . . . . . . . . 10 (((exp‘(i · 𝐴)) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2012, 7, 19syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2112sqvald 13861 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
22 2cn 12048 . . . . . . . . . . . . . 14 2 ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
2423, 12, 7mul12d 11184 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴)))) = ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴)))))
2521, 24oveq12d 7293 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
26 coscl 15836 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2726adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
28 subsq 13926 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
2927, 7, 28syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
30 sqmul 13839 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
315, 2, 30sylancr 587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
32 i2 13919 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
3332oveq1i 7285 . . . . . . . . . . . . . . . 16 ((i↑2) · ((sin‘𝐴)↑2)) = (-1 · ((sin‘𝐴)↑2))
3416mulm1d 11427 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3533, 34eqtrid 2790 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i↑2) · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3631, 35eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = -((sin‘𝐴)↑2))
3736oveq2d 7291 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)))
3827sqcld 13862 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴)↑2) ∈ ℂ)
3938, 16subnegd 11339 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
4038, 16addcomd 11177 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
4137, 39, 403eqtrd 2782 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
42 efival 15861 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4472timesd 12216 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) = ((i · (sin‘𝐴)) + (i · (sin‘𝐴))))
4543, 44oveq12d 7293 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))))
4627, 7, 7pnpcan2d 11370 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4745, 46eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4843, 47oveq12d 7293 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
49 mulcl 10955 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5022, 7, 49sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5112, 12, 50subdid 11431 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5248, 51eqtr3d 2780 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5329, 41, 523eqtr3d 2786 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
54 sincossq 15885 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5554adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5625, 53, 553eqtr2d 2784 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = 1)
5756, 36oveq12d 7293 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)) = (1 + -((sin‘𝐴)↑2)))
58 negsub 11269 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
5915, 16, 58sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
6020, 57, 593eqtrd 2782 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = (1 − ((sin‘𝐴)↑2)))
61 halfre 12187 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
6261a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 / 2) ∈ ℝ)
63 negicn 11222 . . . . . . . . . . . . . . 15 -i ∈ ℂ
64 mulcl 10955 . . . . . . . . . . . . . . 15 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
6563, 8, 64sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) ∈ ℂ)
66 efcl 15792 . . . . . . . . . . . . . 14 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) ∈ ℂ)
6812, 67addcld 10994 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
6968recld 14905 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℝ)
70 halfgt0 12189 . . . . . . . . . . . 12 0 < (1 / 2)
7170a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (1 / 2))
7212recld 14905 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) ∈ ℝ)
7367recld 14905 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) ∈ ℝ)
74 asinsinlem 26041 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
75 negcl 11221 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7675adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
77 reneg 14836 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7877adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
79 halfpire 25621 . . . . . . . . . . . . . . . . . . . 20 (π / 2) ∈ ℝ
8079renegcli 11282 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
81 recl 14821 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
82 iooneg 13203 . . . . . . . . . . . . . . . . . . 19 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8380, 79, 81, 82mp3an12i 1464 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8483biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))
8579recni 10989 . . . . . . . . . . . . . . . . . . 19 (π / 2) ∈ ℂ
8685negnegi 11291 . . . . . . . . . . . . . . . . . 18 --(π / 2) = (π / 2)
8786oveq2i 7286 . . . . . . . . . . . . . . . . 17 (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2))
8884, 87eleqtrdi 2849 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
8978, 88eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2)))
90 asinsinlem 26041 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
9176, 89, 90syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
92 mulneg12 11413 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
935, 8, 92sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) = (i · -𝐴))
9493fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
9594fveq2d 6778 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) = (ℜ‘(exp‘(i · -𝐴))))
9691, 95breqtrrd 5102 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(-i · 𝐴))))
9772, 73, 74, 96addgt0d 11550 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9812, 67readdd 14925 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9997, 98breqtrrd 5102 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
10062, 69, 71, 99mulgt0d 11130 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
101 cosval 15832 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
102101adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
103 2ne0 12077 . . . . . . . . . . . . . . 15 2 ≠ 0
104103a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ≠ 0)
10568, 23, 104divrec2d 11755 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
106102, 105eqtrd 2778 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
107106fveq2d 6778 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
108 remul2 14841 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
10961, 68, 108sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
110107, 109eqtrd 2778 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
111100, 110breqtrrd 5102 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(cos‘𝐴)))
11227, 7, 43mvrraddd 11387 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (cos‘𝐴))
113112fveq2d 6778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (ℜ‘(cos‘𝐴)))
114111, 113breqtrrd 5102 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))))
11514, 18, 60, 114eqsqrt2d 15080 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (√‘(1 − ((sin‘𝐴)↑2))))
116115oveq2d 7291 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
11713, 116eqtr3d 2780 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
118117fveq2d 6778 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))))
119 pire 25615 . . . . . . . . . 10 π ∈ ℝ
120119renegcli 11282 . . . . . . . . 9 -π ∈ ℝ
121120a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
12280a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) ∈ ℝ)
123 elioore 13109 . . . . . . . . 9 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ ℝ)
124123adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
125 pirp 25618 . . . . . . . . . . 11 π ∈ ℝ+
126 rphalflt 12759 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) < π)
127125, 126ax-mp 5 . . . . . . . . . 10 (π / 2) < π
12879, 119ltnegi 11519 . . . . . . . . . 10 ((π / 2) < π ↔ -π < -(π / 2))
129127, 128mpbi 229 . . . . . . . . 9 -π < -(π / 2)
130129a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < -(π / 2))
131 eliooord 13138 . . . . . . . . . 10 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
132131adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
133132simpld 495 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
134121, 122, 124, 130, 133lttrd 11136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℜ‘𝐴))
135 imre 14819 . . . . . . . . 9 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
13610, 135syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1375, 5mulneg1i 11421 . . . . . . . . . . . 12 (-i · i) = -(i · i)
138 ixi 11604 . . . . . . . . . . . . 13 (i · i) = -1
139138negeqi 11214 . . . . . . . . . . . 12 -(i · i) = --1
14015negnegi 11291 . . . . . . . . . . . 12 --1 = 1
141137, 139, 1403eqtri 2770 . . . . . . . . . . 11 (-i · i) = 1
142141oveq1i 7285 . . . . . . . . . 10 ((-i · i) · 𝐴) = (1 · 𝐴)
14363a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
1445a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
145143, 144, 8mulassd 10998 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
146 mulid2 10974 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
147146adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
148142, 145, 1473eqtr3a 2802 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
149148fveq2d 6778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
150136, 149eqtrd 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
151134, 150breqtrrd 5102 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(i · 𝐴)))
152119a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
15379a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) ∈ ℝ)
154132simprd 496 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
155127a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) < π)
156124, 153, 152, 154, 155lttrd 11136 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < π)
157124, 152, 156ltled 11123 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ≤ π)
158150, 157eqbrtrd 5096 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ≤ π)
159 ellogrn 25715 . . . . . 6 ((i · 𝐴) ∈ ran log ↔ ((i · 𝐴) ∈ ℂ ∧ -π < (ℑ‘(i · 𝐴)) ∧ (ℑ‘(i · 𝐴)) ≤ π))
16010, 151, 158, 159syl3anbrc 1342 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ran log)
161 logef 25737 . . . . 5 ((i · 𝐴) ∈ ran log → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
162160, 161syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
163118, 162eqtr3d 2780 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))) = (i · 𝐴))
164163oveq2d 7291 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))) = (-i · (i · 𝐴)))
1654, 164, 1483eqtrd 2782 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  cexp 13782  cre 14808  cim 14809  csqrt 14944  expce 15771  sincsin 15773  cosccos 15774  πcpi 15776  logclog 25710  arcsincasin 26012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-asin 26015
This theorem is referenced by:  acoscos  26043  reasinsin  26046  asinsinb  26047
  Copyright terms: Public domain W3C validator