| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assintop | Structured version Visualization version GIF version | ||
| Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| assintop | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6919 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
| 2 | assintopmap 48161 | . . . 4 ⊢ (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | |
| 3 | 2 | eleq2d 2821 | . . 3 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})) |
| 4 | breq1 5127 | . . . . 5 ⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) | |
| 5 | 4 | elrab 3676 | . . . 4 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) |
| 6 | elmapi 8868 | . . . . 5 ⊢ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
| 7 | 6 | anim1i 615 | . . . 4 ⊢ (( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
| 8 | 5, 7 | sylbi 217 | . . 3 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
| 9 | 3, 8 | biimtrdi 253 | . 2 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀))) |
| 10 | 1, 9 | mpcom 38 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3420 Vcvv 3464 class class class wbr 5124 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 assLaw casslaw 48139 assIntOp cassintop 48153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-intop 48154 df-clintop 48155 df-assintop 48156 |
| This theorem is referenced by: assintopasslaw 48168 |
| Copyright terms: Public domain | W3C validator |