Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintop Structured version   Visualization version   GIF version

Theorem assintop 45019
Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintop ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))

Proof of Theorem assintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6728 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopmap 45016 . . . 4 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2816 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5042 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3591 . . . 4 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀))
6 elmapi 8508 . . . . 5 ( ∈ (𝑀m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76anim1i 618 . . . 4 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
85, 7sylbi 220 . . 3 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
93, 8syl6bi 256 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀)))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  {crab 3055  Vcvv 3398   class class class wbr 5039   × cxp 5534  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486   assLaw casslaw 44994   assIntOp cassintop 45008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-intop 45009  df-clintop 45010  df-assintop 45011
This theorem is referenced by:  assintopasslaw  45023
  Copyright terms: Public domain W3C validator