Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintop Structured version   Visualization version   GIF version

Theorem assintop 48197
Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintop ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))

Proof of Theorem assintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6896 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopmap 48194 . . . 4 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2814 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5110 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3659 . . . 4 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀))
6 elmapi 8822 . . . . 5 ( ∈ (𝑀m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76anim1i 615 . . . 4 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
85, 7sylbi 217 . . 3 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
93, 8biimtrdi 253 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀)))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3405  Vcvv 3447   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799   assLaw casslaw 48172   assIntOp cassintop 48186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-intop 48187  df-clintop 48188  df-assintop 48189
This theorem is referenced by:  assintopasslaw  48201
  Copyright terms: Public domain W3C validator