Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintop | Structured version Visualization version GIF version |
Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintop | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6789 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
2 | assintopmap 45288 | . . . 4 ⊢ (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | |
3 | 2 | eleq2d 2824 | . . 3 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})) |
4 | breq1 5073 | . . . . 5 ⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) | |
5 | 4 | elrab 3617 | . . . 4 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) |
6 | elmapi 8595 | . . . . 5 ⊢ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
7 | 6 | anim1i 614 | . . . 4 ⊢ (( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
8 | 5, 7 | sylbi 216 | . . 3 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
9 | 3, 8 | syl6bi 252 | . 2 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀))) |
10 | 1, 9 | mpcom 38 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {crab 3067 Vcvv 3422 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 assLaw casslaw 45266 assIntOp cassintop 45280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-intop 45281 df-clintop 45282 df-assintop 45283 |
This theorem is referenced by: assintopasslaw 45295 |
Copyright terms: Public domain | W3C validator |