Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintop Structured version   Visualization version   GIF version

Theorem assintop 45291
Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintop ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))

Proof of Theorem assintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6789 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
2 assintopmap 45288 . . . 4 (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
32eleq2d 2824 . . 3 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
4 breq1 5073 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
54elrab 3617 . . . 4 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀))
6 elmapi 8595 . . . . 5 ( ∈ (𝑀m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76anim1i 614 . . . 4 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
85, 7sylbi 216 . . 3 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
93, 8syl6bi 252 . 2 (𝑀 ∈ V → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀)))
101, 9mpcom 38 1 ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 assLaw 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   assLaw casslaw 45266   assIntOp cassintop 45280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-intop 45281  df-clintop 45282  df-assintop 45283
This theorem is referenced by:  assintopasslaw  45295
  Copyright terms: Public domain W3C validator