![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintop | Structured version Visualization version GIF version |
Description: An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintop | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6922 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
2 | assintopmap 47138 | . . . 4 ⊢ (𝑀 ∈ V → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | |
3 | 2 | eleq2d 2813 | . . 3 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})) |
4 | breq1 5144 | . . . . 5 ⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) | |
5 | 4 | elrab 3678 | . . . 4 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) |
6 | elmapi 8842 | . . . . 5 ⊢ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
7 | 6 | anim1i 614 | . . . 4 ⊢ (( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
8 | 5, 7 | sylbi 216 | . . 3 ⊢ ( ⚬ ∈ {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
9 | 3, 8 | syl6bi 253 | . 2 ⊢ (𝑀 ∈ V → ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀))) |
10 | 1, 9 | mpcom 38 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 {crab 3426 Vcvv 3468 class class class wbr 5141 × cxp 5667 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 ↑m cmap 8819 assLaw casslaw 47116 assIntOp cassintop 47130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-map 8821 df-intop 47131 df-clintop 47132 df-assintop 47133 |
This theorem is referenced by: assintopasslaw 47145 |
Copyright terms: Public domain | W3C validator |