Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Structured version   Visualization version   GIF version

Theorem atpsubN 39742
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
atpsubN (𝐾𝑉𝐴𝑆)

Proof of Theorem atpsubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3958 . . 3 𝐴𝐴
2 ax-1 6 . . . . 5 (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))
32rgen 3046 . . . 4 𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴)
43rgen2w 3049 . . 3 𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴)
51, 4pm3.2i 470 . 2 (𝐴𝐴 ∧ ∀𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))
6 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
7 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
8 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
9 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
106, 7, 8, 9ispsubsp 39734 . 2 (𝐾𝑉 → (𝐴𝑆 ↔ (𝐴𝐴 ∧ ∀𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))))
115, 10mpbiri 258 1 (𝐾𝑉𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  lecple 17168  joincjn 18217  Atomscatm 39252  PSubSpcpsubsp 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-psubsp 39492
This theorem is referenced by:  pclvalN  39879  pclclN  39880
  Copyright terms: Public domain W3C validator