| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubN | Structured version Visualization version GIF version | ||
| Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| atpsubN | ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3971 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ax-1 6 | . . . . 5 ⊢ (𝑟 ∈ 𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) | |
| 3 | 2 | rgen 3047 | . . . 4 ⊢ ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
| 4 | 3 | rgen2w 3050 | . . 3 ⊢ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
| 5 | 1, 4 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) |
| 6 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | eqid 2730 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | atpsub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | atpsub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 10 | 6, 7, 8, 9 | ispsubsp 39734 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐴 ∈ 𝑆 ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)))) |
| 11 | 5, 10 | mpbiri 258 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 lecple 17233 joincjn 18278 Atomscatm 39251 PSubSpcpsubsp 39485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-psubsp 39492 |
| This theorem is referenced by: pclvalN 39879 pclclN 39880 |
| Copyright terms: Public domain | W3C validator |