Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Structured version   Visualization version   GIF version

Theorem atpsubN 39742
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
atpsubN (𝐾𝑉𝐴𝑆)

Proof of Theorem atpsubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3971 . . 3 𝐴𝐴
2 ax-1 6 . . . . 5 (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))
32rgen 3047 . . . 4 𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴)
43rgen2w 3050 . . 3 𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴)
51, 4pm3.2i 470 . 2 (𝐴𝐴 ∧ ∀𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))
6 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
7 eqid 2730 . . 3 (join‘𝐾) = (join‘𝐾)
8 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
9 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
106, 7, 8, 9ispsubsp 39734 . 2 (𝐾𝑉 → (𝐴𝑆 ↔ (𝐴𝐴 ∧ ∀𝑝𝐴𝑞𝐴𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝐴))))
115, 10mpbiri 258 1 (𝐾𝑉𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3916   class class class wbr 5109  cfv 6513  (class class class)co 7389  lecple 17233  joincjn 18278  Atomscatm 39251  PSubSpcpsubsp 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-psubsp 39492
This theorem is referenced by:  pclvalN  39879  pclclN  39880
  Copyright terms: Public domain W3C validator