Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Structured version   Visualization version   GIF version

Theorem atpsubN 38927
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atomsβ€˜πΎ)
atpsub.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
atpsubN (𝐾 ∈ 𝑉 β†’ 𝐴 ∈ 𝑆)

Proof of Theorem atpsubN
Dummy variables π‘ž 𝑝 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4003 . . 3 𝐴 βŠ† 𝐴
2 ax-1 6 . . . . 5 (π‘Ÿ ∈ 𝐴 β†’ (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝐴))
32rgen 3061 . . . 4 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝐴)
43rgen2w 3064 . . 3 βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝐴)
51, 4pm3.2i 469 . 2 (𝐴 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝐴))
6 eqid 2730 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
7 eqid 2730 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
8 atpsub.a . . 3 𝐴 = (Atomsβ€˜πΎ)
9 atpsub.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
106, 7, 8, 9ispsubsp 38919 . 2 (𝐾 ∈ 𝑉 β†’ (𝐴 ∈ 𝑆 ↔ (𝐴 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝐴))))
115, 10mpbiri 257 1 (𝐾 ∈ 𝑉 β†’ 𝐴 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  lecple 17208  joincjn 18268  Atomscatm 38436  PSubSpcpsubsp 38670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-psubsp 38677
This theorem is referenced by:  pclvalN  39064  pclclN  39065
  Copyright terms: Public domain W3C validator