![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubN | Structured version Visualization version GIF version |
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atpsub.a | β’ π΄ = (AtomsβπΎ) |
atpsub.s | β’ π = (PSubSpβπΎ) |
Ref | Expression |
---|---|
atpsubN | β’ (πΎ β π β π΄ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4003 | . . 3 β’ π΄ β π΄ | |
2 | ax-1 6 | . . . . 5 β’ (π β π΄ β (π(leβπΎ)(π(joinβπΎ)π) β π β π΄)) | |
3 | 2 | rgen 3061 | . . . 4 β’ βπ β π΄ (π(leβπΎ)(π(joinβπΎ)π) β π β π΄) |
4 | 3 | rgen2w 3064 | . . 3 β’ βπ β π΄ βπ β π΄ βπ β π΄ (π(leβπΎ)(π(joinβπΎ)π) β π β π΄) |
5 | 1, 4 | pm3.2i 469 | . 2 β’ (π΄ β π΄ β§ βπ β π΄ βπ β π΄ βπ β π΄ (π(leβπΎ)(π(joinβπΎ)π) β π β π΄)) |
6 | eqid 2730 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
7 | eqid 2730 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
8 | atpsub.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
9 | atpsub.s | . . 3 β’ π = (PSubSpβπΎ) | |
10 | 6, 7, 8, 9 | ispsubsp 38919 | . 2 β’ (πΎ β π β (π΄ β π β (π΄ β π΄ β§ βπ β π΄ βπ β π΄ βπ β π΄ (π(leβπΎ)(π(joinβπΎ)π) β π β π΄)))) |
11 | 5, 10 | mpbiri 257 | 1 β’ (πΎ β π β π΄ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 β wss 3947 class class class wbr 5147 βcfv 6542 (class class class)co 7411 lecple 17208 joincjn 18268 Atomscatm 38436 PSubSpcpsubsp 38670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-psubsp 38677 |
This theorem is referenced by: pclvalN 39064 pclclN 39065 |
Copyright terms: Public domain | W3C validator |