| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubN | Structured version Visualization version GIF version | ||
| Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| atpsubN | ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ax-1 6 | . . . . 5 ⊢ (𝑟 ∈ 𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) | |
| 3 | 2 | rgen 3052 | . . . 4 ⊢ ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
| 4 | 3 | rgen2w 3055 | . . 3 ⊢ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
| 5 | 1, 4 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) |
| 6 | eqid 2734 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | eqid 2734 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | atpsub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | atpsub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 10 | 6, 7, 8, 9 | ispsubsp 39706 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐴 ∈ 𝑆 ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)))) |
| 11 | 5, 10 | mpbiri 258 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 lecple 17280 joincjn 18327 Atomscatm 39223 PSubSpcpsubsp 39457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-psubsp 39464 |
| This theorem is referenced by: pclvalN 39851 pclclN 39852 |
| Copyright terms: Public domain | W3C validator |