![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubN | Structured version Visualization version GIF version |
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
atpsubN | ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4021 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ax-1 6 | . . . . 5 ⊢ (𝑟 ∈ 𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) | |
3 | 2 | rgen 3063 | . . . 4 ⊢ ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
4 | 3 | rgen2w 3066 | . . 3 ⊢ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴) |
5 | 1, 4 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)) |
6 | eqid 2737 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | eqid 2737 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | atpsub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | atpsub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
10 | 6, 7, 8, 9 | ispsubsp 39742 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐴 ∈ 𝑆 ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝐴)))) |
11 | 5, 10 | mpbiri 258 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3966 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 lecple 17314 joincjn 18378 Atomscatm 39259 PSubSpcpsubsp 39493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-psubsp 39500 |
This theorem is referenced by: pclvalN 39887 pclclN 39888 |
Copyright terms: Public domain | W3C validator |