Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclvalN | Structured version Visualization version GIF version |
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclvalN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | 1 | fvexi 6788 | . . 3 ⊢ 𝐴 ∈ V |
3 | 2 | elpw2 5269 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
4 | pclfval.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | pclfval.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
6 | 1, 4, 5 | pclfvalN 37903 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
7 | 6 | fveq1d 6776 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
9 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) | |
10 | sseq1 3946 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) | |
11 | 10 | rabbidv 3414 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
12 | 11 | inteqd 4884 | . . . 4 ⊢ (𝑥 = 𝑋 → ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
13 | simpr 485 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
14 | elpwi 4542 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝒫 𝐴 → 𝑋 ⊆ 𝐴) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ⊆ 𝐴) |
16 | 1, 4 | atpsubN 37767 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ 𝑆) |
18 | sseq2 3947 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴)) | |
19 | 18 | elrab3 3625 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
20 | 17, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
21 | 15, 20 | mpbird 256 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
22 | 21 | ne0d 4269 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅) |
23 | intex 5261 | . . . . 5 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅ ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) | |
24 | 22, 23 | sylib 217 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) |
25 | 9, 12, 13, 24 | fvmptd3 6898 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
26 | 8, 25 | eqtrd 2778 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
27 | 3, 26 | sylan2br 595 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∩ cint 4879 ↦ cmpt 5157 ‘cfv 6433 Atomscatm 37277 PSubSpcpsubsp 37510 PClcpclN 37901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-psubsp 37517 df-pclN 37902 |
This theorem is referenced by: pclclN 37905 elpclN 37906 elpcliN 37907 pclssN 37908 pclssidN 37909 pclidN 37910 |
Copyright terms: Public domain | W3C validator |