Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 35911
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclvalN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6425 . . 3 𝐴 ∈ V
32elpw2 5020 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
5 pclfval.c . . . . . 6 𝑈 = (PCl‘𝐾)
61, 4, 5pclfvalN 35910 . . . . 5 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
76fveq1d 6413 . . . 4 (𝐾𝑉 → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
87adantr 473 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
9 simpr 478 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
10 elpwi 4359 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
1110adantl 474 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋𝐴)
121, 4atpsubN 35774 . . . . . . . . 9 (𝐾𝑉𝐴𝑆)
1312adantr 473 . . . . . . . 8 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴𝑆)
14 sseq2 3823 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
1514elrab3 3558 . . . . . . . 8 (𝐴𝑆 → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
1613, 15syl 17 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
1711, 16mpbird 249 . . . . . 6 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦𝑆𝑋𝑦})
1817ne0d 4122 . . . . 5 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ≠ ∅)
19 intex 5012 . . . . 5 ({𝑦𝑆𝑋𝑦} ≠ ∅ ↔ {𝑦𝑆𝑋𝑦} ∈ V)
2018, 19sylib 210 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ∈ V)
21 sseq1 3822 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
2221rabbidv 3373 . . . . . 6 (𝑥 = 𝑋 → {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
2322inteqd 4672 . . . . 5 (𝑥 = 𝑋 {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
24 eqid 2799 . . . . 5 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})
2523, 24fvmptg 6505 . . . 4 ((𝑋 ∈ 𝒫 𝐴 {𝑦𝑆𝑋𝑦} ∈ V) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
269, 20, 25syl2anc 580 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
278, 26eqtrd 2833 . 2 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
283, 27sylan2br 589 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2971  {crab 3093  Vcvv 3385  wss 3769  c0 4115  𝒫 cpw 4349   cint 4667  cmpt 4922  cfv 6101  Atomscatm 35284  PSubSpcpsubsp 35517  PClcpclN 35908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-psubsp 35524  df-pclN 35909
This theorem is referenced by:  pclclN  35912  elpclN  35913  elpcliN  35914  pclssN  35915  pclssidN  35916  pclidN  35917
  Copyright terms: Public domain W3C validator