![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclvalN | Structured version Visualization version GIF version |
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclvalN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | 1 | fvexi 6544 | . . 3 ⊢ 𝐴 ∈ V |
3 | 2 | elpw2 5132 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
4 | pclfval.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | pclfval.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
6 | 1, 4, 5 | pclfvalN 36506 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
7 | 6 | fveq1d 6532 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
9 | eqid 2793 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) | |
10 | sseq1 3908 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) | |
11 | 10 | rabbidv 3420 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
12 | 11 | inteqd 4781 | . . . 4 ⊢ (𝑥 = 𝑋 → ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
13 | simpr 485 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
14 | elpwi 4457 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝒫 𝐴 → 𝑋 ⊆ 𝐴) | |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ⊆ 𝐴) |
16 | 1, 4 | atpsubN 36370 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ 𝑆) |
18 | sseq2 3909 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴)) | |
19 | 18 | elrab3 3614 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
20 | 17, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
21 | 15, 20 | mpbird 258 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
22 | 21 | ne0d 4215 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅) |
23 | intex 5124 | . . . . 5 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅ ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) | |
24 | 22, 23 | sylib 219 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) |
25 | 9, 12, 13, 24 | fvmptd3 6648 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
26 | 8, 25 | eqtrd 2829 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
27 | 3, 26 | sylan2br 594 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 {crab 3107 Vcvv 3432 ⊆ wss 3854 ∅c0 4206 𝒫 cpw 4447 ∩ cint 4776 ↦ cmpt 5035 ‘cfv 6217 Atomscatm 35880 PSubSpcpsubsp 36113 PClcpclN 36504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-psubsp 36120 df-pclN 36505 |
This theorem is referenced by: pclclN 36508 elpclN 36509 elpcliN 36510 pclssN 36511 pclssidN 36512 pclidN 36513 |
Copyright terms: Public domain | W3C validator |