Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 39873
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclvalN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6921 . . 3 𝐴 ∈ V
32elpw2 5340 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
5 pclfval.c . . . . . 6 𝑈 = (PCl‘𝐾)
61, 4, 5pclfvalN 39872 . . . . 5 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
76fveq1d 6909 . . . 4 (𝐾𝑉 → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
87adantr 480 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
9 eqid 2735 . . . 4 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})
10 sseq1 4021 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
1110rabbidv 3441 . . . . 5 (𝑥 = 𝑋 → {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
1211inteqd 4956 . . . 4 (𝑥 = 𝑋 {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
13 simpr 484 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
14 elpwi 4612 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
1514adantl 481 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋𝐴)
161, 4atpsubN 39736 . . . . . . . . 9 (𝐾𝑉𝐴𝑆)
1716adantr 480 . . . . . . . 8 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴𝑆)
18 sseq2 4022 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
1918elrab3 3696 . . . . . . . 8 (𝐴𝑆 → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2017, 19syl 17 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2115, 20mpbird 257 . . . . . 6 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦𝑆𝑋𝑦})
2221ne0d 4348 . . . . 5 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ≠ ∅)
23 intex 5350 . . . . 5 ({𝑦𝑆𝑋𝑦} ≠ ∅ ↔ {𝑦𝑆𝑋𝑦} ∈ V)
2422, 23sylib 218 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ∈ V)
259, 12, 13, 24fvmptd3 7039 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
268, 25eqtrd 2775 . 2 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
273, 26sylan2br 595 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  wss 3963  c0 4339  𝒫 cpw 4605   cint 4951  cmpt 5231  cfv 6563  Atomscatm 39245  PSubSpcpsubsp 39479  PClcpclN 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-psubsp 39486  df-pclN 39871
This theorem is referenced by:  pclclN  39874  elpclN  39875  elpcliN  39876  pclssN  39877  pclssidN  39878  pclidN  39879
  Copyright terms: Public domain W3C validator