Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 39869
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclvalN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6840 . . 3 𝐴 ∈ V
32elpw2 5276 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
5 pclfval.c . . . . . 6 𝑈 = (PCl‘𝐾)
61, 4, 5pclfvalN 39868 . . . . 5 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
76fveq1d 6828 . . . 4 (𝐾𝑉 → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
87adantr 480 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
9 eqid 2729 . . . 4 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})
10 sseq1 3963 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
1110rabbidv 3404 . . . . 5 (𝑥 = 𝑋 → {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
1211inteqd 4904 . . . 4 (𝑥 = 𝑋 {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
13 simpr 484 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
14 elpwi 4560 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
1514adantl 481 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋𝐴)
161, 4atpsubN 39732 . . . . . . . . 9 (𝐾𝑉𝐴𝑆)
1716adantr 480 . . . . . . . 8 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴𝑆)
18 sseq2 3964 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
1918elrab3 3651 . . . . . . . 8 (𝐴𝑆 → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2017, 19syl 17 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2115, 20mpbird 257 . . . . . 6 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦𝑆𝑋𝑦})
2221ne0d 4295 . . . . 5 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ≠ ∅)
23 intex 5286 . . . . 5 ({𝑦𝑆𝑋𝑦} ≠ ∅ ↔ {𝑦𝑆𝑋𝑦} ∈ V)
2422, 23sylib 218 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ∈ V)
259, 12, 13, 24fvmptd3 6957 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
268, 25eqtrd 2764 . 2 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
273, 26sylan2br 595 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cint 4899  cmpt 5176  cfv 6486  Atomscatm 39241  PSubSpcpsubsp 39475  PClcpclN 39866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-psubsp 39482  df-pclN 39867
This theorem is referenced by:  pclclN  39870  elpclN  39871  elpcliN  39872  pclssN  39873  pclssidN  39874  pclidN  39875
  Copyright terms: Public domain W3C validator