| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclvalN | Structured version Visualization version GIF version | ||
| Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclvalN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | 1 | fvexi 6836 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | 2 | elpw2 5272 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
| 4 | pclfval.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | pclfval.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
| 6 | 1, 4, 5 | pclfvalN 39927 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| 7 | 6 | fveq1d 6824 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
| 9 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) | |
| 10 | sseq1 3960 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) | |
| 11 | 10 | rabbidv 3402 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 12 | 11 | inteqd 4902 | . . . 4 ⊢ (𝑥 = 𝑋 → ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
| 14 | elpwi 4557 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝒫 𝐴 → 𝑋 ⊆ 𝐴) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ⊆ 𝐴) |
| 16 | 1, 4 | atpsubN 39791 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ 𝑆) |
| 18 | sseq2 3961 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴)) | |
| 19 | 18 | elrab3 3648 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
| 20 | 17, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
| 21 | 15, 20 | mpbird 257 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 22 | 21 | ne0d 4292 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅) |
| 23 | intex 5282 | . . . . 5 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅ ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) | |
| 24 | 22, 23 | sylib 218 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) |
| 25 | 9, 12, 13, 24 | fvmptd3 6952 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 26 | 8, 25 | eqtrd 2766 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 27 | 3, 26 | sylan2br 595 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∩ cint 4897 ↦ cmpt 5172 ‘cfv 6481 Atomscatm 39301 PSubSpcpsubsp 39534 PClcpclN 39925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-psubsp 39541 df-pclN 39926 |
| This theorem is referenced by: pclclN 39929 elpclN 39930 elpcliN 39931 pclssN 39932 pclssidN 39933 pclidN 39934 |
| Copyright terms: Public domain | W3C validator |