Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 37831
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclvalN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atoms‘𝐾)
21fvexi 6770 . . 3 𝐴 ∈ V
32elpw2 5264 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
5 pclfval.c . . . . . 6 𝑈 = (PCl‘𝐾)
61, 4, 5pclfvalN 37830 . . . . 5 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
76fveq1d 6758 . . . 4 (𝐾𝑉 → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
87adantr 480 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
9 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})
10 sseq1 3942 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
1110rabbidv 3404 . . . . 5 (𝑥 = 𝑋 → {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
1211inteqd 4881 . . . 4 (𝑥 = 𝑋 {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
13 simpr 484 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
14 elpwi 4539 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
1514adantl 481 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋𝐴)
161, 4atpsubN 37694 . . . . . . . . 9 (𝐾𝑉𝐴𝑆)
1716adantr 480 . . . . . . . 8 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴𝑆)
18 sseq2 3943 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
1918elrab3 3618 . . . . . . . 8 (𝐴𝑆 → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2017, 19syl 17 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
2115, 20mpbird 256 . . . . . 6 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦𝑆𝑋𝑦})
2221ne0d 4266 . . . . 5 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ≠ ∅)
23 intex 5256 . . . . 5 ({𝑦𝑆𝑋𝑦} ≠ ∅ ↔ {𝑦𝑆𝑋𝑦} ∈ V)
2422, 23sylib 217 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ∈ V)
259, 12, 13, 24fvmptd3 6880 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
268, 25eqtrd 2778 . 2 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
273, 26sylan2br 594 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cint 4876  cmpt 5153  cfv 6418  Atomscatm 37204  PSubSpcpsubsp 37437  PClcpclN 37828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-psubsp 37444  df-pclN 37829
This theorem is referenced by:  pclclN  37832  elpclN  37833  elpcliN  37834  pclssN  37835  pclssidN  37836  pclidN  37837
  Copyright terms: Public domain W3C validator