Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 38756
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atomsβ€˜πΎ)
pclfval.s 𝑆 = (PSubSpβ€˜πΎ)
pclfval.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclvalN ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
21fvexi 6905 . . 3 𝐴 ∈ V
32elpw2 5345 . 2 (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 βŠ† 𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSpβ€˜πΎ)
5 pclfval.c . . . . . 6 π‘ˆ = (PClβ€˜πΎ)
61, 4, 5pclfvalN 38755 . . . . 5 (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
76fveq1d 6893 . . . 4 (𝐾 ∈ 𝑉 β†’ (π‘ˆβ€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹))
87adantr 481 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹))
9 eqid 2732 . . . 4 (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
10 sseq1 4007 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑦 ↔ 𝑋 βŠ† 𝑦))
1110rabbidv 3440 . . . . 5 (π‘₯ = 𝑋 β†’ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
1211inteqd 4955 . . . 4 (π‘₯ = 𝑋 β†’ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
13 simpr 485 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝑋 ∈ 𝒫 𝐴)
14 elpwi 4609 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴 β†’ 𝑋 βŠ† 𝐴)
1514adantl 482 . . . . . . 7 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝑋 βŠ† 𝐴)
161, 4atpsubN 38619 . . . . . . . . 9 (𝐾 ∈ 𝑉 β†’ 𝐴 ∈ 𝑆)
1716adantr 481 . . . . . . . 8 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝐴 ∈ 𝑆)
18 sseq2 4008 . . . . . . . . 9 (𝑦 = 𝐴 β†’ (𝑋 βŠ† 𝑦 ↔ 𝑋 βŠ† 𝐴))
1918elrab3 3684 . . . . . . . 8 (𝐴 ∈ 𝑆 β†’ (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ↔ 𝑋 βŠ† 𝐴))
2017, 19syl 17 . . . . . . 7 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ↔ 𝑋 βŠ† 𝐴))
2115, 20mpbird 256 . . . . . 6 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
2221ne0d 4335 . . . . 5 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} β‰  βˆ…)
23 intex 5337 . . . . 5 ({𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} β‰  βˆ… ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ∈ V)
2422, 23sylib 217 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ∈ V)
259, 12, 13, 24fvmptd3 7021 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
268, 25eqtrd 2772 . 2 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
273, 26sylan2br 595 1 ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆ© cint 4950   ↦ cmpt 5231  β€˜cfv 6543  Atomscatm 38128  PSubSpcpsubsp 38362  PClcpclN 38753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-psubsp 38369  df-pclN 38754
This theorem is referenced by:  pclclN  38757  elpclN  38758  elpcliN  38759  pclssN  38760  pclssidN  38761  pclidN  38762
  Copyright terms: Public domain W3C validator