Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclvalN | Structured version Visualization version GIF version |
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclvalN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | 1 | fvexi 6731 | . . 3 ⊢ 𝐴 ∈ V |
3 | 2 | elpw2 5238 | . 2 ⊢ (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴) |
4 | pclfval.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | pclfval.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
6 | 1, 4, 5 | pclfvalN 37640 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
7 | 6 | fveq1d 6719 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋)) |
9 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) | |
10 | sseq1 3926 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) | |
11 | 10 | rabbidv 3390 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
12 | 11 | inteqd 4864 | . . . 4 ⊢ (𝑥 = 𝑋 → ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
13 | simpr 488 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴) | |
14 | elpwi 4522 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝒫 𝐴 → 𝑋 ⊆ 𝐴) | |
15 | 14 | adantl 485 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝑋 ⊆ 𝐴) |
16 | 1, 4 | atpsubN 37504 | . . . . . . . . 9 ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
17 | 16 | adantr 484 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ 𝑆) |
18 | sseq2 3927 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴)) | |
19 | 18 | elrab3 3603 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
20 | 17, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ 𝑋 ⊆ 𝐴)) |
21 | 15, 20 | mpbird 260 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
22 | 21 | ne0d 4250 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅) |
23 | intex 5230 | . . . . 5 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ≠ ∅ ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) | |
24 | 22, 23 | sylib 221 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ∈ V) |
25 | 9, 12, 13, 24 | fvmptd3 6841 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
26 | 8, 25 | eqtrd 2777 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
27 | 3, 26 | sylan2br 598 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {crab 3065 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 𝒫 cpw 4513 ∩ cint 4859 ↦ cmpt 5135 ‘cfv 6380 Atomscatm 37014 PSubSpcpsubsp 37247 PClcpclN 37638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-psubsp 37254 df-pclN 37639 |
This theorem is referenced by: pclclN 37642 elpclN 37643 elpcliN 37644 pclssN 37645 pclssidN 37646 pclidN 37647 |
Copyright terms: Public domain | W3C validator |