Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 39273
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atomsβ€˜πΎ)
pclfval.s 𝑆 = (PSubSpβ€˜πΎ)
pclfval.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclvalN ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
21fvexi 6898 . . 3 𝐴 ∈ V
32elpw2 5338 . 2 (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 βŠ† 𝐴)
4 pclfval.s . . . . . 6 𝑆 = (PSubSpβ€˜πΎ)
5 pclfval.c . . . . . 6 π‘ˆ = (PClβ€˜πΎ)
61, 4, 5pclfvalN 39272 . . . . 5 (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
76fveq1d 6886 . . . 4 (𝐾 ∈ 𝑉 β†’ (π‘ˆβ€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹))
87adantr 480 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹))
9 eqid 2726 . . . 4 (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
10 sseq1 4002 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑦 ↔ 𝑋 βŠ† 𝑦))
1110rabbidv 3434 . . . . 5 (π‘₯ = 𝑋 β†’ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
1211inteqd 4948 . . . 4 (π‘₯ = 𝑋 β†’ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
13 simpr 484 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝑋 ∈ 𝒫 𝐴)
14 elpwi 4604 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴 β†’ 𝑋 βŠ† 𝐴)
1514adantl 481 . . . . . . 7 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝑋 βŠ† 𝐴)
161, 4atpsubN 39136 . . . . . . . . 9 (𝐾 ∈ 𝑉 β†’ 𝐴 ∈ 𝑆)
1716adantr 480 . . . . . . . 8 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝐴 ∈ 𝑆)
18 sseq2 4003 . . . . . . . . 9 (𝑦 = 𝐴 β†’ (𝑋 βŠ† 𝑦 ↔ 𝑋 βŠ† 𝐴))
1918elrab3 3679 . . . . . . . 8 (𝐴 ∈ 𝑆 β†’ (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ↔ 𝑋 βŠ† 𝐴))
2017, 19syl 17 . . . . . . 7 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ↔ 𝑋 βŠ† 𝐴))
2115, 20mpbird 257 . . . . . 6 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ 𝐴 ∈ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
2221ne0d 4330 . . . . 5 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} β‰  βˆ…)
23 intex 5330 . . . . 5 ({𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} β‰  βˆ… ↔ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ∈ V)
2422, 23sylib 217 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦} ∈ V)
259, 12, 13, 24fvmptd3 7014 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ ((π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})β€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
268, 25eqtrd 2766 . 2 ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
273, 26sylan2br 594 1 ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 βŠ† 𝑦})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  {crab 3426  Vcvv 3468   βŠ† wss 3943  βˆ…c0 4317  π’« cpw 4597  βˆ© cint 4943   ↦ cmpt 5224  β€˜cfv 6536  Atomscatm 38645  PSubSpcpsubsp 38879  PClcpclN 39270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-psubsp 38886  df-pclN 39271
This theorem is referenced by:  pclclN  39274  elpclN  39275  elpcliN  39276  pclssN  39277  pclssidN  39278  pclidN  39279
  Copyright terms: Public domain W3C validator