Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elec1cnvxrn2 Structured version   Visualization version   GIF version

Theorem elec1cnvxrn2 38420
Description: Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.)
Assertion
Ref Expression
elec1cnvxrn2 (𝐵𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧   𝑦,𝑉,𝑧

Proof of Theorem elec1cnvxrn2
StepHypRef Expression
1 relcnv 6096 . . 3 Rel (𝑅𝑆)
2 relelec 8771 . . 3 (Rel (𝑅𝑆) → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵)
4 br1cnvxrn2 38419 . 2 (𝐵𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
53, 4bitrid 283 1 (𝐵𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wex 1779  wcel 2109  cop 4612   class class class wbr 5124  ccnv 5658  Rel wrel 5664  [cec 8722  cxrn 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-ec 8726  df-xrn 38394
This theorem is referenced by:  rnxrn  38421
  Copyright terms: Public domain W3C validator