| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elec1cnvxrn2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| elec1cnvxrn2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6096 | . . 3 ⊢ Rel ◡(𝑅 ⋉ 𝑆) | |
| 2 | relelec 8771 | . . 3 ⊢ (Rel ◡(𝑅 ⋉ 𝑆) → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ 𝐴◡(𝑅 ⋉ 𝑆)𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ 𝐴◡(𝑅 ⋉ 𝑆)𝐵) |
| 4 | br1cnvxrn2 38419 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 ◡ccnv 5658 Rel wrel 5664 [cec 8722 ⋉ cxrn 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-ec 8726 df-xrn 38394 |
| This theorem is referenced by: rnxrn 38421 |
| Copyright terms: Public domain | W3C validator |