MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr Structured version   Visualization version   GIF version

Theorem lmbr 21794
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21765. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
Distinct variable groups:   𝑦,𝑢,𝐹   𝑢,𝐽,𝑦   𝜑,𝑢   𝑢,𝑃   𝑢,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)

Proof of Theorem lmbr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 lmfval 21768 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
31, 2syl 17 . . 3 (𝜑 → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
43breqd 5068 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃))
5 reseq1 5840 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
65feq1d 6492 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑦):𝑦𝑢 ↔ (𝐹𝑦):𝑦𝑢))
76rexbidv 3294 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢 ↔ ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
87imbi2d 342 . . . . . 6 (𝑓 = 𝐹 → ((𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
98ralbidv 3194 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
10 eleq1 2897 . . . . . . 7 (𝑥 = 𝑃 → (𝑥𝑢𝑃𝑢))
1110imbi1d 343 . . . . . 6 (𝑥 = 𝑃 → ((𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
1211ralbidv 3194 . . . . 5 (𝑥 = 𝑃 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
139, 12sylan9bb 510 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑃) → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
14 df-3an 1081 . . . . 5 ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
1514opabbii 5124 . . . 4 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
1613, 15brab2a 5637 . . 3 (𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃 ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
17 df-3an 1081 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
1816, 17bitr4i 279 . 2 (𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
194, 18syl6bb 288 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  {copab 5119  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  pm cpm 8396  cc 10523  cuz 12231  TopOnctopon 21446  𝑡clm 21762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-top 21430  df-topon 21447  df-lm 21765
This theorem is referenced by:  lmbr2  21795  lmfpm  21831  lmcl  21833  lmff  21837  lmmbr  23788
  Copyright terms: Public domain W3C validator