MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issect Structured version   Visualization version   GIF version

Theorem issect 17766
Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
issect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))

Proof of Theorem issect
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . . 4 𝐵 = (Base‘𝐶)
2 issect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 issect.o . . . 4 · = (comp‘𝐶)
4 issect.i . . . 4 1 = (Id‘𝐶)
5 issect.s . . . 4 𝑆 = (Sect‘𝐶)
6 issect.c . . . 4 (𝜑𝐶 ∈ Cat)
7 issect.x . . . 4 (𝜑𝑋𝐵)
8 issect.y . . . 4 (𝜑𝑌𝐵)
91, 2, 3, 4, 5, 6, 7, 8sectfval 17764 . . 3 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
109breqd 5130 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺))
11 oveq12 7414 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1211ancoms 458 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1312eqeq1d 2737 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋) ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
14 eqid 2735 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}
1513, 14brab2a 5748 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
16 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1715, 16bitr4i 278 . 2 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1810, 17bitrdi 287 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  {copab 5181  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677  Sectcsect 17757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-sect 17760
This theorem is referenced by:  issect2  17767  sectcan  17768  sectco  17769  oppcsect  17791  sectmon  17795  monsect  17796  funcsect  17885  fucsect  17988  invfuc  17990  setcsect  18102  catciso  18124  rngcsect  20596  ringcsect  20630  rngcsectALTV  48250  ringcsectALTV  48284  thincsect  49353
  Copyright terms: Public domain W3C validator