MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issect Structured version   Visualization version   GIF version

Theorem issect 17697
Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
issect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))

Proof of Theorem issect
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . . 4 𝐵 = (Base‘𝐶)
2 issect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 issect.o . . . 4 · = (comp‘𝐶)
4 issect.i . . . 4 1 = (Id‘𝐶)
5 issect.s . . . 4 𝑆 = (Sect‘𝐶)
6 issect.c . . . 4 (𝜑𝐶 ∈ Cat)
7 issect.x . . . 4 (𝜑𝑋𝐵)
8 issect.y . . . 4 (𝜑𝑌𝐵)
91, 2, 3, 4, 5, 6, 7, 8sectfval 17695 . . 3 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
109breqd 5159 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺))
11 oveq12 7415 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1211ancoms 460 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1312eqeq1d 2735 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋) ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
14 eqid 2733 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}
1513, 14brab2a 5768 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
16 df-3an 1090 . . 3 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1715, 16bitr4i 278 . 2 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1810, 17bitrdi 287 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cop 4634   class class class wbr 5148  {copab 5210  cfv 6541  (class class class)co 7406  Basecbs 17141  Hom chom 17205  compcco 17206  Catccat 17605  Idccid 17606  Sectcsect 17688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-sect 17691
This theorem is referenced by:  issect2  17698  sectcan  17699  sectco  17700  oppcsect  17722  sectmon  17726  monsect  17727  funcsect  17819  fucsect  17922  invfuc  17924  setcsect  18036  catciso  18058  rngcsect  46832  rngcsectALTV  46844  ringcsect  46883  ringcsectALTV  46907  thincsect  47631
  Copyright terms: Public domain W3C validator