![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issect | Structured version Visualization version GIF version |
Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
issect.b | ⊢ 𝐵 = (Base‘𝐶) |
issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
issect.o | ⊢ · = (comp‘𝐶) |
issect.i | ⊢ 1 = (Id‘𝐶) |
issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
issect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | issect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | issect.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | issect.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
5 | issect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | issect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | issect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | issect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | sectfval 17799 | . . 3 ⊢ (𝜑 → (𝑋𝑆𝑌) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}) |
10 | 9 | breqd 5159 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺)) |
11 | oveq12 7440 | . . . . . 6 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) | |
12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) |
13 | 12 | eqeq1d 2737 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
14 | eqid 2735 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} | |
15 | 13, 14 | brab2a 5782 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
16 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | |
17 | 15, 16 | bitr4i 278 | . 2 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
18 | 10, 17 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 {copab 5210 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 compcco 17310 Catccat 17709 Idccid 17710 Sectcsect 17792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-sect 17795 |
This theorem is referenced by: issect2 17802 sectcan 17803 sectco 17804 oppcsect 17826 sectmon 17830 monsect 17831 funcsect 17923 fucsect 18029 invfuc 18031 setcsect 18143 catciso 18165 rngcsect 20653 ringcsect 20687 rngcsectALTV 48119 ringcsectALTV 48153 thincsect 48858 |
Copyright terms: Public domain | W3C validator |