| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issect | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| issect.b | ⊢ 𝐵 = (Base‘𝐶) |
| issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| issect.o | ⊢ · = (comp‘𝐶) |
| issect.i | ⊢ 1 = (Id‘𝐶) |
| issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| issect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | issect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | issect.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 4 | issect.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 5 | issect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | issect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | issect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | issect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | sectfval 17650 | . . 3 ⊢ (𝜑 → (𝑋𝑆𝑌) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}) |
| 10 | 9 | breqd 5100 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺)) |
| 11 | oveq12 7350 | . . . . . 6 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) | |
| 12 | 11 | ancoms 458 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) |
| 13 | 12 | eqeq1d 2732 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
| 14 | eqid 2730 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} | |
| 15 | 13, 14 | brab2a 5707 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
| 16 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | |
| 17 | 15, 16 | bitr4i 278 | . 2 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
| 18 | 10, 17 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 {copab 5151 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Hom chom 17164 compcco 17165 Catccat 17562 Idccid 17563 Sectcsect 17643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-sect 17646 |
| This theorem is referenced by: issect2 17653 sectcan 17654 sectco 17655 oppcsect 17677 sectmon 17681 monsect 17682 funcsect 17771 fucsect 17874 invfuc 17876 setcsect 17988 catciso 18010 rngcsect 20544 ringcsect 20578 rngcsectALTV 48285 ringcsectALTV 48319 catcsect 49409 thincsect 49478 |
| Copyright terms: Public domain | W3C validator |