MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issect Structured version   Visualization version   GIF version

Theorem issect 17678
Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
issect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))

Proof of Theorem issect
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . . 4 𝐵 = (Base‘𝐶)
2 issect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 issect.o . . . 4 · = (comp‘𝐶)
4 issect.i . . . 4 1 = (Id‘𝐶)
5 issect.s . . . 4 𝑆 = (Sect‘𝐶)
6 issect.c . . . 4 (𝜑𝐶 ∈ Cat)
7 issect.x . . . 4 (𝜑𝑋𝐵)
8 issect.y . . . 4 (𝜑𝑌𝐵)
91, 2, 3, 4, 5, 6, 7, 8sectfval 17676 . . 3 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
109breqd 5106 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺))
11 oveq12 7362 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1211ancoms 458 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹))
1312eqeq1d 2731 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋) ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
14 eqid 2729 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}
1513, 14brab2a 5716 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
16 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1715, 16bitr4i 278 . 2 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
1810, 17bitrdi 287 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095  {copab 5157  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Sectcsect 17669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-sect 17672
This theorem is referenced by:  issect2  17679  sectcan  17680  sectco  17681  oppcsect  17703  sectmon  17707  monsect  17708  funcsect  17797  fucsect  17900  invfuc  17902  setcsect  18014  catciso  18036  rngcsect  20539  ringcsect  20573  rngcsectALTV  48247  ringcsectALTV  48281  catcsect  49371  thincsect  49440
  Copyright terms: Public domain W3C validator