Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brafs Structured version   Visualization version   GIF version

Theorem brafs 31950
Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.)
Hypotheses
Ref Expression
brafs.p 𝑃 = (Base‘𝐺)
brafs.d = (dist‘𝐺)
brafs.i 𝐼 = (Itv‘𝐺)
brafs.g (𝜑𝐺 ∈ TarskiG)
brafs.o 𝑂 = (AFS‘𝐺)
brafs.1 (𝜑𝐴𝑃)
brafs.2 (𝜑𝐵𝑃)
brafs.3 (𝜑𝐶𝑃)
brafs.4 (𝜑𝐷𝑃)
brafs.5 (𝜑𝑋𝑃)
brafs.6 (𝜑𝑌𝑃)
brafs.7 (𝜑𝑍𝑃)
brafs.8 (𝜑𝑊𝑃)
Assertion
Ref Expression
brafs (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝑋, 𝑌⟩, ⟨𝑍, 𝑊⟩⟩ ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍)) ∧ ((𝐴 𝐷) = (𝑋 𝑊) ∧ (𝐵 𝐷) = (𝑌 𝑊)))))

Proof of Theorem brafs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7137 . . . . 5 (𝑎 = 𝐴 → (𝑎𝐼𝑐) = (𝐴𝐼𝑐))
21eleq2d 2897 . . . 4 (𝑎 = 𝐴 → (𝑏 ∈ (𝑎𝐼𝑐) ↔ 𝑏 ∈ (𝐴𝐼𝑐)))
32anbi1d 632 . . 3 (𝑎 = 𝐴 → ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑏 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧))))
4 oveq1 7137 . . . . 5 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
54eqeq1d 2823 . . . 4 (𝑎 = 𝐴 → ((𝑎 𝑏) = (𝑥 𝑦) ↔ (𝐴 𝑏) = (𝑥 𝑦)))
65anbi1d 632 . . 3 (𝑎 = 𝐴 → (((𝑎 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ↔ ((𝐴 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧))))
7 oveq1 7137 . . . . 5 (𝑎 = 𝐴 → (𝑎 𝑑) = (𝐴 𝑑))
87eqeq1d 2823 . . . 4 (𝑎 = 𝐴 → ((𝑎 𝑑) = (𝑥 𝑤) ↔ (𝐴 𝑑) = (𝑥 𝑤)))
98anbi1d 632 . . 3 (𝑎 = 𝐴 → (((𝑎 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤)) ↔ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤))))
103, 6, 93anbi123d 1433 . 2 (𝑎 = 𝐴 → (((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ∧ ((𝑎 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤))) ↔ ((𝑏 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤)))))
11 eleq1 2899 . . . 4 (𝑏 = 𝐵 → (𝑏 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝑐)))
1211anbi1d 632 . . 3 (𝑏 = 𝐵 → ((𝑏 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧))))
13 oveq2 7138 . . . . 5 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
1413eqeq1d 2823 . . . 4 (𝑏 = 𝐵 → ((𝐴 𝑏) = (𝑥 𝑦) ↔ (𝐴 𝐵) = (𝑥 𝑦)))
15 oveq1 7137 . . . . 5 (𝑏 = 𝐵 → (𝑏 𝑐) = (𝐵 𝑐))
1615eqeq1d 2823 . . . 4 (𝑏 = 𝐵 → ((𝑏 𝑐) = (𝑦 𝑧) ↔ (𝐵 𝑐) = (𝑦 𝑧)))
1714, 16anbi12d 633 . . 3 (𝑏 = 𝐵 → (((𝐴 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ↔ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝑐) = (𝑦 𝑧))))
18 oveq1 7137 . . . . 5 (𝑏 = 𝐵 → (𝑏 𝑑) = (𝐵 𝑑))
1918eqeq1d 2823 . . . 4 (𝑏 = 𝐵 → ((𝑏 𝑑) = (𝑦 𝑤) ↔ (𝐵 𝑑) = (𝑦 𝑤)))
2019anbi2d 631 . . 3 (𝑏 = 𝐵 → (((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤)) ↔ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤))))
2112, 17, 203anbi123d 1433 . 2 (𝑏 = 𝐵 → (((𝑏 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝑐) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤)))))
22 oveq2 7138 . . . . 5 (𝑐 = 𝐶 → (𝐴𝐼𝑐) = (𝐴𝐼𝐶))
2322eleq2d 2897 . . . 4 (𝑐 = 𝐶 → (𝐵 ∈ (𝐴𝐼𝑐) ↔ 𝐵 ∈ (𝐴𝐼𝐶)))
2423anbi1d 632 . . 3 (𝑐 = 𝐶 → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧))))
25 oveq2 7138 . . . . 5 (𝑐 = 𝐶 → (𝐵 𝑐) = (𝐵 𝐶))
2625eqeq1d 2823 . . . 4 (𝑐 = 𝐶 → ((𝐵 𝑐) = (𝑦 𝑧) ↔ (𝐵 𝐶) = (𝑦 𝑧)))
2726anbi2d 631 . . 3 (𝑐 = 𝐶 → (((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝑐) = (𝑦 𝑧)) ↔ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧))))
2824, 273anbi12d 1434 . 2 (𝑐 = 𝐶 → (((𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝑐) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤)))))
29 oveq2 7138 . . . . 5 (𝑑 = 𝐷 → (𝐴 𝑑) = (𝐴 𝐷))
3029eqeq1d 2823 . . . 4 (𝑑 = 𝐷 → ((𝐴 𝑑) = (𝑥 𝑤) ↔ (𝐴 𝐷) = (𝑥 𝑤)))
31 oveq2 7138 . . . . 5 (𝑑 = 𝐷 → (𝐵 𝑑) = (𝐵 𝐷))
3231eqeq1d 2823 . . . 4 (𝑑 = 𝐷 → ((𝐵 𝑑) = (𝑦 𝑤) ↔ (𝐵 𝐷) = (𝑦 𝑤)))
3330, 32anbi12d 633 . . 3 (𝑑 = 𝐷 → (((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤)) ↔ ((𝐴 𝐷) = (𝑥 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤))))
34333anbi3d 1439 . 2 (𝑑 = 𝐷 → (((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝑑) = (𝑥 𝑤) ∧ (𝐵 𝑑) = (𝑦 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝐷) = (𝑥 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤)))))
35 oveq1 7137 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
3635eleq2d 2897 . . . 4 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
3736anbi2d 631 . . 3 (𝑥 = 𝑋 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑋𝐼𝑧))))
38 oveq1 7137 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
3938eqeq2d 2832 . . . 4 (𝑥 = 𝑋 → ((𝐴 𝐵) = (𝑥 𝑦) ↔ (𝐴 𝐵) = (𝑋 𝑦)))
4039anbi1d 632 . . 3 (𝑥 = 𝑋 → (((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ↔ ((𝐴 𝐵) = (𝑋 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧))))
41 oveq1 7137 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑤) = (𝑋 𝑤))
4241eqeq2d 2832 . . . 4 (𝑥 = 𝑋 → ((𝐴 𝐷) = (𝑥 𝑤) ↔ (𝐴 𝐷) = (𝑋 𝑤)))
4342anbi1d 632 . . 3 (𝑥 = 𝑋 → (((𝐴 𝐷) = (𝑥 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤)) ↔ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤))))
4437, 40, 433anbi123d 1433 . 2 (𝑥 = 𝑋 → (((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑥 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝐷) = (𝑥 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑋𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑋 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤)))))
45 eleq1 2899 . . . 4 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
4645anbi2d 631 . . 3 (𝑦 = 𝑌 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑧))))
47 oveq2 7138 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
4847eqeq2d 2832 . . . 4 (𝑦 = 𝑌 → ((𝐴 𝐵) = (𝑋 𝑦) ↔ (𝐴 𝐵) = (𝑋 𝑌)))
49 oveq1 7137 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
5049eqeq2d 2832 . . . 4 (𝑦 = 𝑌 → ((𝐵 𝐶) = (𝑦 𝑧) ↔ (𝐵 𝐶) = (𝑌 𝑧)))
5148, 50anbi12d 633 . . 3 (𝑦 = 𝑌 → (((𝐴 𝐵) = (𝑋 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ↔ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑧))))
52 oveq1 7137 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑤) = (𝑌 𝑤))
5352eqeq2d 2832 . . . 4 (𝑦 = 𝑌 → ((𝐵 𝐷) = (𝑦 𝑤) ↔ (𝐵 𝐷) = (𝑌 𝑤)))
5453anbi2d 631 . . 3 (𝑦 = 𝑌 → (((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤)) ↔ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤))))
5546, 51, 543anbi123d 1433 . 2 (𝑦 = 𝑌 → (((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑦 ∈ (𝑋𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑋 𝑦) ∧ (𝐵 𝐶) = (𝑦 𝑧)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑦 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑧)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤)))))
56 oveq2 7138 . . . . 5 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
5756eleq2d 2897 . . . 4 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
5857anbi2d 631 . . 3 (𝑧 = 𝑍 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍))))
59 oveq2 7138 . . . . 5 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
6059eqeq2d 2832 . . . 4 (𝑧 = 𝑍 → ((𝐵 𝐶) = (𝑌 𝑧) ↔ (𝐵 𝐶) = (𝑌 𝑍)))
6160anbi2d 631 . . 3 (𝑧 = 𝑍 → (((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑧)) ↔ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍))))
6258, 613anbi12d 1434 . 2 (𝑧 = 𝑍 → (((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑧)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑧)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤)))))
63 oveq2 7138 . . . . 5 (𝑤 = 𝑊 → (𝑋 𝑤) = (𝑋 𝑊))
6463eqeq2d 2832 . . . 4 (𝑤 = 𝑊 → ((𝐴 𝐷) = (𝑋 𝑤) ↔ (𝐴 𝐷) = (𝑋 𝑊)))
65 oveq2 7138 . . . . 5 (𝑤 = 𝑊 → (𝑌 𝑤) = (𝑌 𝑊))
6665eqeq2d 2832 . . . 4 (𝑤 = 𝑊 → ((𝐵 𝐷) = (𝑌 𝑤) ↔ (𝐵 𝐷) = (𝑌 𝑊)))
6764, 66anbi12d 633 . . 3 (𝑤 = 𝑊 → (((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤)) ↔ ((𝐴 𝐷) = (𝑋 𝑊) ∧ (𝐵 𝐷) = (𝑌 𝑊))))
68673anbi3d 1439 . 2 (𝑤 = 𝑊 → (((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍)) ∧ ((𝐴 𝐷) = (𝑋 𝑤) ∧ (𝐵 𝐷) = (𝑌 𝑤))) ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍)) ∧ ((𝐴 𝐷) = (𝑋 𝑊) ∧ (𝐵 𝐷) = (𝑌 𝑊)))))
69 brafs.o . . 3 𝑂 = (AFS‘𝐺)
70 brafs.p . . . 4 𝑃 = (Base‘𝐺)
71 brafs.d . . . 4 = (dist‘𝐺)
72 brafs.i . . . 4 𝐼 = (Itv‘𝐺)
73 brafs.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7470, 71, 72, 73afsval 31949 . . 3 (𝜑 → (AFS‘𝐺) = {⟨𝑒, 𝑓⟩ ∣ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑥𝑃𝑦𝑃𝑧𝑃𝑤𝑃 (𝑒 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑓 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ∧ ((𝑎 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤))))})
7569, 74syl5eq 2868 . 2 (𝜑𝑂 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑥𝑃𝑦𝑃𝑧𝑃𝑤𝑃 (𝑒 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑓 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 𝑏) = (𝑥 𝑦) ∧ (𝑏 𝑐) = (𝑦 𝑧)) ∧ ((𝑎 𝑑) = (𝑥 𝑤) ∧ (𝑏 𝑑) = (𝑦 𝑤))))})
76 brafs.1 . 2 (𝜑𝐴𝑃)
77 brafs.2 . 2 (𝜑𝐵𝑃)
78 brafs.3 . 2 (𝜑𝐶𝑃)
79 brafs.4 . 2 (𝜑𝐷𝑃)
80 brafs.5 . 2 (𝜑𝑋𝑃)
81 brafs.6 . 2 (𝜑𝑌𝑃)
82 brafs.7 . 2 (𝜑𝑍𝑃)
83 brafs.8 . 2 (𝜑𝑊𝑃)
8410, 21, 28, 34, 44, 55, 62, 68, 75, 76, 77, 78, 79, 80, 81, 82, 83br8d 30347 1 (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝑋, 𝑌⟩, ⟨𝑍, 𝑊⟩⟩ ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 𝐵) = (𝑋 𝑌) ∧ (𝐵 𝐶) = (𝑌 𝑍)) ∧ ((𝐴 𝐷) = (𝑋 𝑊) ∧ (𝐵 𝐷) = (𝑌 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wrex 3127  cop 4546   class class class wbr 5039  {copab 5101  cfv 6328  (class class class)co 7130  Basecbs 16461  distcds 16552  TarskiGcstrkg 26202  Itvcitv 26208  AFScafs 31947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7133  df-afs 31948
This theorem is referenced by:  tg5segofs  31951
  Copyright terms: Public domain W3C validator