![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tg5segofs | Structured version Visualization version GIF version |
Description: Rephrase axtg5seg 28491 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tg5segofs.p | ⊢ 𝑃 = (Base‘𝐺) |
tg5segofs.m | ⊢ − = (dist‘𝐺) |
tg5segofs.s | ⊢ 𝐼 = (Itv‘𝐺) |
tg5segofs.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tg5segofs.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tg5segofs.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tg5segofs.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tg5segofs.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tg5segofs.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tg5segofs.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tg5segofs.o | ⊢ 𝑂 = (AFS‘𝐺) |
tg5segofs.h | ⊢ (𝜑 → 𝐻 ∈ 𝑃) |
tg5segofs.i | ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
tg5segofs.1 | ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) |
tg5segofs.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
tg5segofs | ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg5segofs.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tg5segofs.m | . 2 ⊢ − = (dist‘𝐺) | |
3 | tg5segofs.s | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tg5segofs.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tg5segofs.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | tg5segofs.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | tg5segofs.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | tg5segofs.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
9 | tg5segofs.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
10 | tg5segofs.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑃) | |
11 | tg5segofs.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
12 | tg5segofs.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑃) | |
13 | tg5segofs.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
14 | tg5segofs.1 | . . . . 5 ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) | |
15 | tg5segofs.o | . . . . . 6 ⊢ 𝑂 = (AFS‘𝐺) | |
16 | 1, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12 | brafs 34649 | . . . . 5 ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉 ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻)) ∧ ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼))))) |
17 | 14, 16 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻)) ∧ ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼)))) |
18 | 17 | simp1d 1142 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻))) |
19 | 18 | simpld 494 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
20 | 18 | simprd 495 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐸𝐼𝐻)) |
21 | 17 | simp2d 1143 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻))) |
22 | 21 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐸 − 𝐹)) |
23 | 21 | simprd 495 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐹 − 𝐻)) |
24 | 17 | simp3d 1144 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼))) |
25 | 24 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐸 − 𝐼)) |
26 | 24 | simprd 495 | . 2 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐹 − 𝐼)) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26 | axtg5seg 28491 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 AFScafs 34646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-trkgcb 28476 df-trkg 28479 df-afs 34647 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |