Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tg5segofs Structured version   Visualization version   GIF version

Theorem tg5segofs 34667
Description: Rephrase axtg5seg 28488 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tg5segofs.p 𝑃 = (Base‘𝐺)
tg5segofs.m = (dist‘𝐺)
tg5segofs.s 𝐼 = (Itv‘𝐺)
tg5segofs.g (𝜑𝐺 ∈ TarskiG)
tg5segofs.a (𝜑𝐴𝑃)
tg5segofs.b (𝜑𝐵𝑃)
tg5segofs.c (𝜑𝐶𝑃)
tg5segofs.d (𝜑𝐷𝑃)
tg5segofs.e (𝜑𝐸𝑃)
tg5segofs.f (𝜑𝐹𝑃)
tg5segofs.o 𝑂 = (AFS‘𝐺)
tg5segofs.h (𝜑𝐻𝑃)
tg5segofs.i (𝜑𝐼𝑃)
tg5segofs.1 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
tg5segofs.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tg5segofs (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))

Proof of Theorem tg5segofs
StepHypRef Expression
1 tg5segofs.p . 2 𝑃 = (Base‘𝐺)
2 tg5segofs.m . 2 = (dist‘𝐺)
3 tg5segofs.s . 2 𝐼 = (Itv‘𝐺)
4 tg5segofs.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tg5segofs.a . 2 (𝜑𝐴𝑃)
6 tg5segofs.b . 2 (𝜑𝐵𝑃)
7 tg5segofs.c . 2 (𝜑𝐶𝑃)
8 tg5segofs.e . 2 (𝜑𝐸𝑃)
9 tg5segofs.f . 2 (𝜑𝐹𝑃)
10 tg5segofs.h . 2 (𝜑𝐻𝑃)
11 tg5segofs.d . 2 (𝜑𝐷𝑃)
12 tg5segofs.i . 2 (𝜑𝐼𝑃)
13 tg5segofs.2 . 2 (𝜑𝐴𝐵)
14 tg5segofs.1 . . . . 5 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
15 tg5segofs.o . . . . . 6 𝑂 = (AFS‘𝐺)
161, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12brafs 34666 . . . . 5 (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩ ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))))
1714, 16mpbid 232 . . . 4 (𝜑 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼))))
1817simp1d 1141 . . 3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)))
1918simpld 494 . 2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2018simprd 495 . 2 (𝜑𝐹 ∈ (𝐸𝐼𝐻))
2117simp2d 1142 . . 3 (𝜑 → ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)))
2221simpld 494 . 2 (𝜑 → (𝐴 𝐵) = (𝐸 𝐹))
2321simprd 495 . 2 (𝜑 → (𝐵 𝐶) = (𝐹 𝐻))
2417simp3d 1143 . . 3 (𝜑 → ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))
2524simpld 494 . 2 (𝜑 → (𝐴 𝐷) = (𝐸 𝐼))
2624simprd 495 . 2 (𝜑 → (𝐵 𝐷) = (𝐹 𝐼))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26axtg5seg 28488 1 (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  AFScafs 34663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-trkgcb 28473  df-trkg 28476  df-afs 34664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator