Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tg5segofs Structured version   Visualization version   GIF version

Theorem tg5segofs 34707
Description: Rephrase axtg5seg 28444 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tg5segofs.p 𝑃 = (Base‘𝐺)
tg5segofs.m = (dist‘𝐺)
tg5segofs.s 𝐼 = (Itv‘𝐺)
tg5segofs.g (𝜑𝐺 ∈ TarskiG)
tg5segofs.a (𝜑𝐴𝑃)
tg5segofs.b (𝜑𝐵𝑃)
tg5segofs.c (𝜑𝐶𝑃)
tg5segofs.d (𝜑𝐷𝑃)
tg5segofs.e (𝜑𝐸𝑃)
tg5segofs.f (𝜑𝐹𝑃)
tg5segofs.o 𝑂 = (AFS‘𝐺)
tg5segofs.h (𝜑𝐻𝑃)
tg5segofs.i (𝜑𝐼𝑃)
tg5segofs.1 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
tg5segofs.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tg5segofs (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))

Proof of Theorem tg5segofs
StepHypRef Expression
1 tg5segofs.p . 2 𝑃 = (Base‘𝐺)
2 tg5segofs.m . 2 = (dist‘𝐺)
3 tg5segofs.s . 2 𝐼 = (Itv‘𝐺)
4 tg5segofs.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tg5segofs.a . 2 (𝜑𝐴𝑃)
6 tg5segofs.b . 2 (𝜑𝐵𝑃)
7 tg5segofs.c . 2 (𝜑𝐶𝑃)
8 tg5segofs.e . 2 (𝜑𝐸𝑃)
9 tg5segofs.f . 2 (𝜑𝐹𝑃)
10 tg5segofs.h . 2 (𝜑𝐻𝑃)
11 tg5segofs.d . 2 (𝜑𝐷𝑃)
12 tg5segofs.i . 2 (𝜑𝐼𝑃)
13 tg5segofs.2 . 2 (𝜑𝐴𝐵)
14 tg5segofs.1 . . . . 5 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
15 tg5segofs.o . . . . . 6 𝑂 = (AFS‘𝐺)
161, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12brafs 34706 . . . . 5 (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩ ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))))
1714, 16mpbid 232 . . . 4 (𝜑 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼))))
1817simp1d 1142 . . 3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)))
1918simpld 494 . 2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2018simprd 495 . 2 (𝜑𝐹 ∈ (𝐸𝐼𝐻))
2117simp2d 1143 . . 3 (𝜑 → ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)))
2221simpld 494 . 2 (𝜑 → (𝐴 𝐵) = (𝐸 𝐹))
2321simprd 495 . 2 (𝜑 → (𝐵 𝐶) = (𝐹 𝐻))
2417simp3d 1144 . . 3 (𝜑 → ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))
2524simpld 494 . 2 (𝜑 → (𝐴 𝐷) = (𝐸 𝐼))
2624simprd 495 . 2 (𝜑 → (𝐵 𝐷) = (𝐹 𝐼))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26axtg5seg 28444 1 (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412  AFScafs 34703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-trkgcb 28429  df-trkg 28432  df-afs 34704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator