![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tg5segofs | Structured version Visualization version GIF version |
Description: Rephrase axtg5seg 28289 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tg5segofs.p | ⊢ 𝑃 = (Base‘𝐺) |
tg5segofs.m | ⊢ − = (dist‘𝐺) |
tg5segofs.s | ⊢ 𝐼 = (Itv‘𝐺) |
tg5segofs.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tg5segofs.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tg5segofs.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tg5segofs.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tg5segofs.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tg5segofs.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tg5segofs.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tg5segofs.o | ⊢ 𝑂 = (AFS‘𝐺) |
tg5segofs.h | ⊢ (𝜑 → 𝐻 ∈ 𝑃) |
tg5segofs.i | ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
tg5segofs.1 | ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) |
tg5segofs.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
tg5segofs | ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg5segofs.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tg5segofs.m | . 2 ⊢ − = (dist‘𝐺) | |
3 | tg5segofs.s | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tg5segofs.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tg5segofs.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | tg5segofs.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | tg5segofs.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | tg5segofs.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
9 | tg5segofs.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
10 | tg5segofs.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑃) | |
11 | tg5segofs.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
12 | tg5segofs.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑃) | |
13 | tg5segofs.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
14 | tg5segofs.1 | . . . . 5 ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) | |
15 | tg5segofs.o | . . . . . 6 ⊢ 𝑂 = (AFS‘𝐺) | |
16 | 1, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12 | brafs 34337 | . . . . 5 ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉 ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻)) ∧ ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼))))) |
17 | 14, 16 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻)) ∧ ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼)))) |
18 | 17 | simp1d 1139 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻))) |
19 | 18 | simpld 493 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
20 | 18 | simprd 494 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐸𝐼𝐻)) |
21 | 17 | simp2d 1140 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐸 − 𝐹) ∧ (𝐵 − 𝐶) = (𝐹 − 𝐻))) |
22 | 21 | simpld 493 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐸 − 𝐹)) |
23 | 21 | simprd 494 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐹 − 𝐻)) |
24 | 17 | simp3d 1141 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐷) = (𝐸 − 𝐼) ∧ (𝐵 − 𝐷) = (𝐹 − 𝐼))) |
25 | 24 | simpld 493 | . 2 ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐸 − 𝐼)) |
26 | 24 | simprd 494 | . 2 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐹 − 𝐼)) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26 | axtg5seg 28289 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 〈cop 4638 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 distcds 17249 TarskiGcstrkg 28251 Itvcitv 28257 AFScafs 34334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-trkgcb 28274 df-trkg 28277 df-afs 34335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |