Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tg5segofs Structured version   Visualization version   GIF version

Theorem tg5segofs 34705
Description: Rephrase axtg5seg 28444 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tg5segofs.p 𝑃 = (Base‘𝐺)
tg5segofs.m = (dist‘𝐺)
tg5segofs.s 𝐼 = (Itv‘𝐺)
tg5segofs.g (𝜑𝐺 ∈ TarskiG)
tg5segofs.a (𝜑𝐴𝑃)
tg5segofs.b (𝜑𝐵𝑃)
tg5segofs.c (𝜑𝐶𝑃)
tg5segofs.d (𝜑𝐷𝑃)
tg5segofs.e (𝜑𝐸𝑃)
tg5segofs.f (𝜑𝐹𝑃)
tg5segofs.o 𝑂 = (AFS‘𝐺)
tg5segofs.h (𝜑𝐻𝑃)
tg5segofs.i (𝜑𝐼𝑃)
tg5segofs.1 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
tg5segofs.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
tg5segofs (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))

Proof of Theorem tg5segofs
StepHypRef Expression
1 tg5segofs.p . 2 𝑃 = (Base‘𝐺)
2 tg5segofs.m . 2 = (dist‘𝐺)
3 tg5segofs.s . 2 𝐼 = (Itv‘𝐺)
4 tg5segofs.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tg5segofs.a . 2 (𝜑𝐴𝑃)
6 tg5segofs.b . 2 (𝜑𝐵𝑃)
7 tg5segofs.c . 2 (𝜑𝐶𝑃)
8 tg5segofs.e . 2 (𝜑𝐸𝑃)
9 tg5segofs.f . 2 (𝜑𝐹𝑃)
10 tg5segofs.h . 2 (𝜑𝐻𝑃)
11 tg5segofs.d . 2 (𝜑𝐷𝑃)
12 tg5segofs.i . 2 (𝜑𝐼𝑃)
13 tg5segofs.2 . 2 (𝜑𝐴𝐵)
14 tg5segofs.1 . . . . 5 (𝜑 → ⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩)
15 tg5segofs.o . . . . . 6 𝑂 = (AFS‘𝐺)
161, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12brafs 34704 . . . . 5 (𝜑 → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑂⟨⟨𝐸, 𝐹⟩, ⟨𝐻, 𝐼⟩⟩ ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))))
1714, 16mpbid 232 . . . 4 (𝜑 → ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)) ∧ ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)) ∧ ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼))))
1817simp1d 1142 . . 3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝐹 ∈ (𝐸𝐼𝐻)))
1918simpld 494 . 2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
2018simprd 495 . 2 (𝜑𝐹 ∈ (𝐸𝐼𝐻))
2117simp2d 1143 . . 3 (𝜑 → ((𝐴 𝐵) = (𝐸 𝐹) ∧ (𝐵 𝐶) = (𝐹 𝐻)))
2221simpld 494 . 2 (𝜑 → (𝐴 𝐵) = (𝐸 𝐹))
2321simprd 495 . 2 (𝜑 → (𝐵 𝐶) = (𝐹 𝐻))
2417simp3d 1144 . . 3 (𝜑 → ((𝐴 𝐷) = (𝐸 𝐼) ∧ (𝐵 𝐷) = (𝐹 𝐼)))
2524simpld 494 . 2 (𝜑 → (𝐴 𝐷) = (𝐸 𝐼))
2624simprd 495 . 2 (𝜑 → (𝐵 𝐷) = (𝐹 𝐼))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26axtg5seg 28444 1 (𝜑 → (𝐶 𝐷) = (𝐻 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  AFScafs 34701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-trkgcb 28429  df-trkg 28432  df-afs 34702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator