Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgmex | Structured version Visualization version GIF version |
Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgmex | ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.f | . 2 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | neicvg.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
5 | neicvg.r | . . . . 5 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
6 | 3, 4, 5 | neicvgbex 41268 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | pwexg 5245 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
8 | 7 | adantl 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
10 | 1, 8, 9, 2 | fsovf1od 41170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | f1ofn 6619 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
13 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
14 | 13, 3, 9 | dssmapf1od 41175 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
15 | f1of 6618 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
17 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
18 | 1, 9, 8, 17 | fsovfd 41166 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
19 | 4 | breqi 5036 | . . . . . . 7 ⊢ (𝑁𝐻𝑀 ↔ 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
20 | 5, 19 | sylib 221 | . . . . . 6 ⊢ (𝜑 → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
21 | 20 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
22 | 12, 16, 18, 21 | brcofffn 41187 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
23 | 6, 22 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
24 | 23 | simp3d 1145 | . 2 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑁))𝐹𝑀) |
25 | 1, 2, 24 | ntrneinex 41233 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 {crab 3057 Vcvv 3398 ∖ cdif 3840 𝒫 cpw 4488 class class class wbr 5030 ↦ cmpt 5110 ∘ ccom 5529 Fn wfn 6334 ⟶wf 6335 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7170 ∈ cmpo 7172 ↑m cmap 8437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-1st 7714 df-2nd 7715 df-map 8439 |
This theorem is referenced by: neicvgnex 41274 |
Copyright terms: Public domain | W3C validator |