Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgmex Structured version   Visualization version   GIF version

Theorem neicvgmex 42858
Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgmex (𝜑𝑀 ∈ (𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgmex
StepHypRef Expression
1 neicvg.o . 2 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 neicvg.f . 2 𝐹 = (𝒫 𝐵𝑂𝐵)
3 neicvg.d . . . . 5 𝐷 = (𝑃𝐵)
4 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
5 neicvg.r . . . . 5 (𝜑𝑁𝐻𝑀)
63, 4, 5neicvgbex 42853 . . . 4 (𝜑𝐵 ∈ V)
7 pwexg 5376 . . . . . . . 8 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
87adantl 482 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
9 simpr 485 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
101, 8, 9, 2fsovf1od 42757 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
11 f1ofn 6834 . . . . . 6 (𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
1210, 11syl 17 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵m 𝒫 𝐵))
13 neicvg.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1413, 3, 9dssmapf1od 42762 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
15 f1of 6833 . . . . . 6 (𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
1614, 15syl 17 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
17 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
181, 9, 8, 17fsovfd 42753 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵m 𝐵)⟶(𝒫 𝐵m 𝒫 𝐵))
194breqi 5154 . . . . . . 7 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
205, 19sylib 217 . . . . . 6 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2120adantr 481 . . . . 5 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2212, 16, 18, 21brcofffn 42772 . . . 4 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
236, 22mpdan 685 . . 3 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
2423simp3d 1144 . 2 (𝜑 → (𝐷‘(𝐺𝑁))𝐹𝑀)
251, 2, 24ntrneinex 42818 1 (𝜑𝑀 ∈ (𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  cdif 3945  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  ccom 5680   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7408  cmpo 7410  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821
This theorem is referenced by:  neicvgnex  42859
  Copyright terms: Public domain W3C validator