| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgmex | Structured version Visualization version GIF version | ||
| Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
| Ref | Expression |
|---|---|
| neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
| neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
| Ref | Expression |
|---|---|
| neicvgmex | ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neicvg.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | neicvg.f | . 2 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | neicvg.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 4 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
| 5 | neicvg.r | . . . . 5 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
| 6 | 3, 4, 5 | neicvgbex 44074 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 7 | pwexg 5328 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 10 | 1, 8, 9, 2 | fsovf1od 43978 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 11 | f1ofn 6783 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 13 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 14 | 13, 3, 9 | dssmapf1od 43983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 15 | f1of 6782 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 17 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
| 18 | 1, 9, 8, 17 | fsovfd 43974 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 19 | 4 | breqi 5108 | . . . . . . 7 ⊢ (𝑁𝐻𝑀 ↔ 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
| 20 | 5, 19 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷 ∘ 𝐺))𝑀) |
| 22 | 12, 16, 18, 21 | brcofffn 43993 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
| 23 | 6, 22 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑁𝐺(𝐺‘𝑁) ∧ (𝐺‘𝑁)𝐷(𝐷‘(𝐺‘𝑁)) ∧ (𝐷‘(𝐺‘𝑁))𝐹𝑀)) |
| 24 | 23 | simp3d 1144 | . 2 ⊢ (𝜑 → (𝐷‘(𝐺‘𝑁))𝐹𝑀) |
| 25 | 1, 2, 24 | ntrneinex 44039 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∖ cdif 3908 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 |
| This theorem is referenced by: neicvgnex 44080 |
| Copyright terms: Public domain | W3C validator |