Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrncnvepresex Structured version   Visualization version   GIF version

Theorem xrncnvepresex 38030
Description: Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
xrncnvepresex ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)

Proof of Theorem xrncnvepresex
StepHypRef Expression
1 cnvepresex 37956 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
21adantr 479 . 2 ((𝐴𝑉𝑅𝑊) → ( E ↾ 𝐴) ∈ V)
3 xrnresex 38028 . 2 ((𝐴𝑉𝑅𝑊 ∧ ( E ↾ 𝐴) ∈ V) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
42, 3mpd3an3 1458 1 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  Vcvv 3461   E cep 5581  ccnv 5677  cres 5680  cxrn 37798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-eprel 5582  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-1st 7994  df-2nd 7995  df-xrn 37993
This theorem is referenced by:  1cossxrncnvepresex  38044  pets  38474
  Copyright terms: Public domain W3C validator