Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrncnvepresex | Structured version Visualization version GIF version |
Description: Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
xrncnvepresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex 36553 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (◡ E ↾ 𝐴) ∈ V) |
3 | xrnresex 36626 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (◡ E ↾ 𝐴) ∈ V) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
4 | 2, 3 | mpd3an3 1462 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 E cep 5505 ◡ccnv 5599 ↾ cres 5602 ⋉ cxrn 36386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-1st 7863 df-2nd 7864 df-xrn 36591 |
This theorem is referenced by: 1cossxrncnvepresex 36642 pets 37072 |
Copyright terms: Public domain | W3C validator |