Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrncnvepresex Structured version   Visualization version   GIF version

Theorem xrncnvepresex 38454
Description: Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
xrncnvepresex ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)

Proof of Theorem xrncnvepresex
StepHypRef Expression
1 cnvepresex 38367 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
21adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → ( E ↾ 𝐴) ∈ V)
3 xrnresex 38452 . 2 ((𝐴𝑉𝑅𝑊 ∧ ( E ↾ 𝐴) ∈ V) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
42, 3mpd3an3 1464 1 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436   E cep 5513  ccnv 5613  cres 5616  cxrn 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-xrn 38403
This theorem is referenced by:  eceldmqsxrncnvepres  38459  eceldmqsxrncnvepres2  38460  1cossxrncnvepresex  38523  pets  38949
  Copyright terms: Public domain W3C validator