MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Visualization version   GIF version

Theorem catlid 17634
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catlid (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)

Proof of Theorem catlid
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . 3 (𝑓 = 𝐹 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2747 . 2 (𝑓 = 𝐹 → ((( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹))
4 oveq1 7419 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑌) = (𝑋𝐻𝑌))
5 opeq1 4873 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑥, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
65oveq1d 7427 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑥, 𝑌· 𝑌) = (⟨𝑋, 𝑌· 𝑌))
76oveqd 7429 . . . . 5 (𝑥 = 𝑋 → (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓))
87eqeq1d 2733 . . . 4 (𝑥 = 𝑋 → ((( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
94, 8raleqbidv 3341 . . 3 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
10 simpl 482 . . . . . . . 8 ((∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1110ralimi 3082 . . . . . . 7 (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1211a1i 11 . . . . . 6 (𝑔 ∈ (𝑌𝐻𝑌) → (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
1312ss2rabi 4074 . . . . 5 {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓}
14 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
15 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
16 catlid.o . . . . . . 7 · = (comp‘𝐶)
17 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
18 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
19 catlid.y . . . . . . 7 (𝜑𝑌𝐵)
2014, 15, 16, 17, 18, 19cidval 17628 . . . . . 6 (𝜑 → ( 1𝑌) = (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)))
2114, 15, 16, 17, 19catideu 17626 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓))
22 riotacl2 7385 . . . . . . 7 (∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2321, 22syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2420, 23eqeltrd 2832 . . . . 5 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2513, 24sselid 3980 . . . 4 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓})
26 oveq1 7419 . . . . . . . 8 (𝑔 = ( 1𝑌) → (𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓))
2726eqeq1d 2733 . . . . . . 7 (𝑔 = ( 1𝑌) → ((𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
28272ralbidv 3217 . . . . . 6 (𝑔 = ( 1𝑌) → (∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
2928elrab 3683 . . . . 5 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} ↔ (( 1𝑌) ∈ (𝑌𝐻𝑌) ∧ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
3029simprbi 496 . . . 4 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
3125, 30syl 17 . . 3 (𝜑 → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
32 catidcl.x . . 3 (𝜑𝑋𝐵)
339, 31, 32rspcdva 3613 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓)
34 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
353, 33, 34rspcdva 3613 1 (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  ∃!wreu 3373  {crab 3431  cop 4634  cfv 6543  crio 7367  (class class class)co 7412  Basecbs 17151  Hom chom 17215  compcco 17216  Catccat 17615  Idccid 17616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-cat 17619  df-cid 17620
This theorem is referenced by:  oppccatid  17672  sectcan  17709  sectco  17710  sectmon  17736  monsect  17737  sectid  17740  invisoinvl  17744  subccatid  17803  fucidcl  17928  fuclid  17929  invfuc  17937  arwlid  18032  xpccatid  18150  evlfcl  18185  curf1cl  18191  curf2cl  18194  curfcl  18195  curfuncf  18201  uncfcurf  18202  hofcl  18222  yon12  18228  yon2  18229  yonedalem3b  18242  yonedainv  18244  bj-endmnd  36663  endmndlem  47797  idmon  47798
  Copyright terms: Public domain W3C validator