MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Visualization version   GIF version

Theorem catlid 17700
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catlid (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)

Proof of Theorem catlid
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . 3 (𝑓 = 𝐹 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2752 . 2 (𝑓 = 𝐹 → ((( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹))
4 oveq1 7417 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑌) = (𝑋𝐻𝑌))
5 opeq1 4854 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑥, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
65oveq1d 7425 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑥, 𝑌· 𝑌) = (⟨𝑋, 𝑌· 𝑌))
76oveqd 7427 . . . . 5 (𝑥 = 𝑋 → (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓))
87eqeq1d 2738 . . . 4 (𝑥 = 𝑋 → ((( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
94, 8raleqbidv 3329 . . 3 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
10 simpl 482 . . . . . . . 8 ((∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1110ralimi 3074 . . . . . . 7 (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1211a1i 11 . . . . . 6 (𝑔 ∈ (𝑌𝐻𝑌) → (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
1312ss2rabi 4057 . . . . 5 {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓}
14 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
15 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
16 catlid.o . . . . . . 7 · = (comp‘𝐶)
17 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
18 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
19 catlid.y . . . . . . 7 (𝜑𝑌𝐵)
2014, 15, 16, 17, 18, 19cidval 17694 . . . . . 6 (𝜑 → ( 1𝑌) = (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)))
2114, 15, 16, 17, 19catideu 17692 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓))
22 riotacl2 7383 . . . . . . 7 (∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2321, 22syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2420, 23eqeltrd 2835 . . . . 5 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2513, 24sselid 3961 . . . 4 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓})
26 oveq1 7417 . . . . . . . 8 (𝑔 = ( 1𝑌) → (𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓))
2726eqeq1d 2738 . . . . . . 7 (𝑔 = ( 1𝑌) → ((𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
28272ralbidv 3209 . . . . . 6 (𝑔 = ( 1𝑌) → (∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
2928elrab 3676 . . . . 5 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} ↔ (( 1𝑌) ∈ (𝑌𝐻𝑌) ∧ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
3029simprbi 496 . . . 4 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
3125, 30syl 17 . . 3 (𝜑 → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
32 catidcl.x . . 3 (𝜑𝑋𝐵)
339, 31, 32rspcdva 3607 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓)
34 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
353, 33, 34rspcdva 3607 1 (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  ∃!wreu 3362  {crab 3420  cop 4612  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-cat 17685  df-cid 17686
This theorem is referenced by:  oppccatid  17736  sectcan  17773  sectco  17774  sectmon  17800  monsect  17801  sectid  17804  invisoinvl  17808  subccatid  17864  fucidcl  17986  fuclid  17987  invfuc  17995  arwlid  18090  xpccatid  18205  evlfcl  18239  curf1cl  18245  curf2cl  18248  curfcl  18249  curfuncf  18255  uncfcurf  18256  hofcl  18276  yon12  18282  yon2  18283  yonedalem3b  18296  yonedainv  18298  bj-endmnd  37341  endmndlem  48957  idmon  48962  discsubc  48998  upciclem3  49070  fucoid  49226  fucolid  49239  coccom  49501
  Copyright terms: Public domain W3C validator