MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Visualization version   GIF version

Theorem catlid 17607
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catlid (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)

Proof of Theorem catlid
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . 3 (𝑓 = 𝐹 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2745 . 2 (𝑓 = 𝐹 → ((( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹))
4 oveq1 7360 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑌) = (𝑋𝐻𝑌))
5 opeq1 4827 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑥, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
65oveq1d 7368 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑥, 𝑌· 𝑌) = (⟨𝑋, 𝑌· 𝑌))
76oveqd 7370 . . . . 5 (𝑥 = 𝑋 → (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓))
87eqeq1d 2731 . . . 4 (𝑥 = 𝑋 → ((( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
94, 8raleqbidv 3310 . . 3 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
10 simpl 482 . . . . . . . 8 ((∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1110ralimi 3066 . . . . . . 7 (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1211a1i 11 . . . . . 6 (𝑔 ∈ (𝑌𝐻𝑌) → (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
1312ss2rabi 4030 . . . . 5 {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓}
14 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
15 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
16 catlid.o . . . . . . 7 · = (comp‘𝐶)
17 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
18 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
19 catlid.y . . . . . . 7 (𝜑𝑌𝐵)
2014, 15, 16, 17, 18, 19cidval 17601 . . . . . 6 (𝜑 → ( 1𝑌) = (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)))
2114, 15, 16, 17, 19catideu 17599 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓))
22 riotacl2 7326 . . . . . . 7 (∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2321, 22syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2420, 23eqeltrd 2828 . . . . 5 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2513, 24sselid 3935 . . . 4 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓})
26 oveq1 7360 . . . . . . . 8 (𝑔 = ( 1𝑌) → (𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓))
2726eqeq1d 2731 . . . . . . 7 (𝑔 = ( 1𝑌) → ((𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
28272ralbidv 3193 . . . . . 6 (𝑔 = ( 1𝑌) → (∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
2928elrab 3650 . . . . 5 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} ↔ (( 1𝑌) ∈ (𝑌𝐻𝑌) ∧ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
3029simprbi 496 . . . 4 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
3125, 30syl 17 . . 3 (𝜑 → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
32 catidcl.x . . 3 (𝜑𝑋𝐵)
339, 31, 32rspcdva 3580 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓)
34 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
353, 33, 34rspcdva 3580 1 (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  {crab 3396  cop 4585  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-cat 17592  df-cid 17593
This theorem is referenced by:  oppccatid  17643  sectcan  17680  sectco  17681  sectmon  17707  monsect  17708  sectid  17711  invisoinvl  17715  subccatid  17771  fucidcl  17893  fuclid  17894  invfuc  17902  arwlid  17997  xpccatid  18112  evlfcl  18146  curf1cl  18152  curf2cl  18155  curfcl  18156  curfuncf  18162  uncfcurf  18163  hofcl  18183  yon12  18189  yon2  18190  yonedalem3b  18203  yonedainv  18205  bj-endmnd  37294  endmndlem  49004  idmon  49009  discsubc  49053  upciclem3  49157  fucoid  49337  fucolid  49350  coccom  49653
  Copyright terms: Public domain W3C validator