MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Visualization version   GIF version

Theorem catlid 17693
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catlid (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)

Proof of Theorem catlid
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7411 . . 3 (𝑓 = 𝐹 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2751 . 2 (𝑓 = 𝐹 → ((( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹))
4 oveq1 7410 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑌) = (𝑋𝐻𝑌))
5 opeq1 4849 . . . . . . 7 (𝑥 = 𝑋 → ⟨𝑥, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
65oveq1d 7418 . . . . . 6 (𝑥 = 𝑋 → (⟨𝑥, 𝑌· 𝑌) = (⟨𝑋, 𝑌· 𝑌))
76oveqd 7420 . . . . 5 (𝑥 = 𝑋 → (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓))
87eqeq1d 2737 . . . 4 (𝑥 = 𝑋 → ((( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
94, 8raleqbidv 3325 . . 3 (𝑥 = 𝑋 → (∀𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓))
10 simpl 482 . . . . . . . 8 ((∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1110ralimi 3073 . . . . . . 7 (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
1211a1i 11 . . . . . 6 (𝑔 ∈ (𝑌𝐻𝑌) → (∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
1312ss2rabi 4052 . . . . 5 {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓}
14 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
15 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
16 catlid.o . . . . . . 7 · = (comp‘𝐶)
17 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
18 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
19 catlid.y . . . . . . 7 (𝜑𝑌𝐵)
2014, 15, 16, 17, 18, 19cidval 17687 . . . . . 6 (𝜑 → ( 1𝑌) = (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)))
2114, 15, 16, 17, 19catideu 17685 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓))
22 riotacl2 7376 . . . . . . 7 (∃!𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓) → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2321, 22syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑌)∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2420, 23eqeltrd 2834 . . . . 5 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵 (∀𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑌𝐻𝑥)(𝑓(⟨𝑌, 𝑌· 𝑥)𝑔) = 𝑓)})
2513, 24sselid 3956 . . . 4 (𝜑 → ( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓})
26 oveq1 7410 . . . . . . . 8 (𝑔 = ( 1𝑌) → (𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓))
2726eqeq1d 2737 . . . . . . 7 (𝑔 = ( 1𝑌) → ((𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ (( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
28272ralbidv 3205 . . . . . 6 (𝑔 = ( 1𝑌) → (∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓 ↔ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
2928elrab 3671 . . . . 5 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} ↔ (( 1𝑌) ∈ (𝑌𝐻𝑌) ∧ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓))
3029simprbi 496 . . . 4 (( 1𝑌) ∈ {𝑔 ∈ (𝑌𝐻𝑌) ∣ ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(𝑔(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓} → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
3125, 30syl 17 . . 3 (𝜑 → ∀𝑥𝐵𝑓 ∈ (𝑥𝐻𝑌)(( 1𝑌)(⟨𝑥, 𝑌· 𝑌)𝑓) = 𝑓)
32 catidcl.x . . 3 (𝜑𝑋𝐵)
339, 31, 32rspcdva 3602 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝑓) = 𝑓)
34 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
353, 33, 34rspcdva 3602 1 (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  ∃!wreu 3357  {crab 3415  cop 4607  cfv 6530  crio 7359  (class class class)co 7403  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  Idccid 17675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-cat 17678  df-cid 17679
This theorem is referenced by:  oppccatid  17729  sectcan  17766  sectco  17767  sectmon  17793  monsect  17794  sectid  17797  invisoinvl  17801  subccatid  17857  fucidcl  17979  fuclid  17980  invfuc  17988  arwlid  18083  xpccatid  18198  evlfcl  18232  curf1cl  18238  curf2cl  18241  curfcl  18242  curfuncf  18248  uncfcurf  18249  hofcl  18269  yon12  18275  yon2  18276  yonedalem3b  18289  yonedainv  18291  bj-endmnd  37282  endmndlem  48938  idmon  48943  discsubc  48979  upciclem3  49023  fucoid  49176  fucolid  49189
  Copyright terms: Public domain W3C validator