MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Structured version   Visualization version   GIF version

Theorem catidcl 17630
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))

Proof of Theorem catidcl
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3 𝐵 = (Base‘𝐶)
2 catidcl.h . . 3 𝐻 = (Hom ‘𝐶)
3 eqid 2730 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 catidcl.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidcl.i . . 3 1 = (Id‘𝐶)
6 catidcl.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6cidval 17625 . 2 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
81, 2, 3, 4, 6catideu 17623 . . 3 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
9 riotacl 7385 . . 3 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
108, 9syl 17 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
117, 10eqeltrd 2831 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  ∃!wreu 3372  cop 4633  cfv 6542  crio 7366  (class class class)co 7411  Basecbs 17148  Hom chom 17212  compcco 17213  Catccat 17612  Idccid 17613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-cat 17616  df-cid 17617
This theorem is referenced by:  oppccatid  17669  monsect  17734  sectid  17737  catsubcat  17793  fullsubc  17804  idfucl  17835  cofucl  17842  fthsect  17880  fucidcl  17922  initoid  17955  termoid  17956  idahom  18014  catcisolem  18064  xpccatid  18144  1stfcl  18153  2ndfcl  18154  prfcl  18159  evlfcl  18179  curf1cl  18185  curf2cl  18188  curfcl  18189  curfuncf  18195  uncfcurf  18196  diag12  18201  diag2  18202  curf2ndf  18204  hofcl  18216  yon12  18222  yon2  18223  yonedalem3a  18231  yonedalem3b  18236  yonedainv  18238  bj-endmnd  36502  catprs  47718  endmndlem  47722  idmon  47723  idepi  47724  thincid  47740  functhinclem4  47751
  Copyright terms: Public domain W3C validator