Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version |
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
catidcl.i | ⊢ 1 = (Id‘𝐶) |
catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | cidval 17386 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
8 | 1, 2, 3, 4, 6 | catideu 17384 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
9 | riotacl 7250 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
11 | 7, 10 | eqeltrd 2839 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 〈cop 4567 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-cat 17377 df-cid 17378 |
This theorem is referenced by: oppccatid 17430 monsect 17495 sectid 17498 catsubcat 17554 fullsubc 17565 idfucl 17596 cofucl 17603 fthsect 17641 fucidcl 17683 initoid 17716 termoid 17717 idahom 17775 catcisolem 17825 xpccatid 17905 1stfcl 17914 2ndfcl 17915 prfcl 17920 evlfcl 17940 curf1cl 17946 curf2cl 17949 curfcl 17950 curfuncf 17956 uncfcurf 17957 diag12 17962 diag2 17963 curf2ndf 17965 hofcl 17977 yon12 17983 yon2 17984 yonedalem3a 17992 yonedalem3b 17997 yonedainv 17999 bj-endmnd 35489 catprs 46292 endmndlem 46296 idmon 46297 idepi 46298 thincid 46314 functhinclem4 46325 |
Copyright terms: Public domain | W3C validator |