![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version |
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
catidcl.i | ⊢ 1 = (Id‘𝐶) |
catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | cidval 17625 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
8 | 1, 2, 3, 4, 6 | catideu 17623 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
9 | riotacl 7385 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
11 | 7, 10 | eqeltrd 2831 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃!wreu 3372 ⟨cop 4633 ‘cfv 6542 ℩crio 7366 (class class class)co 7411 Basecbs 17148 Hom chom 17212 compcco 17213 Catccat 17612 Idccid 17613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-cat 17616 df-cid 17617 |
This theorem is referenced by: oppccatid 17669 monsect 17734 sectid 17737 catsubcat 17793 fullsubc 17804 idfucl 17835 cofucl 17842 fthsect 17880 fucidcl 17922 initoid 17955 termoid 17956 idahom 18014 catcisolem 18064 xpccatid 18144 1stfcl 18153 2ndfcl 18154 prfcl 18159 evlfcl 18179 curf1cl 18185 curf2cl 18188 curfcl 18189 curfuncf 18195 uncfcurf 18196 diag12 18201 diag2 18202 curf2ndf 18204 hofcl 18216 yon12 18222 yon2 18223 yonedalem3a 18231 yonedalem3b 18236 yonedainv 18238 bj-endmnd 36502 catprs 47718 endmndlem 47722 idmon 47723 idepi 47724 thincid 47740 functhinclem4 47751 |
Copyright terms: Public domain | W3C validator |