MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Structured version   Visualization version   GIF version

Theorem catidcl 17025
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))

Proof of Theorem catidcl
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3 𝐵 = (Base‘𝐶)
2 catidcl.h . . 3 𝐻 = (Hom ‘𝐶)
3 eqid 2758 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 catidcl.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidcl.i . . 3 1 = (Id‘𝐶)
6 catidcl.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6cidval 17020 . 2 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
81, 2, 3, 4, 6catideu 17018 . . 3 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
9 riotacl 7131 . . 3 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
108, 9syl 17 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
117, 10eqeltrd 2852 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  ∃!wreu 3072  cop 4531  cfv 6340  crio 7113  (class class class)co 7156  Basecbs 16555  Hom chom 16648  compcco 16649  Catccat 17007  Idccid 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-cat 17011  df-cid 17012
This theorem is referenced by:  oppccatid  17061  monsect  17126  sectid  17129  catsubcat  17182  fullsubc  17193  idfucl  17224  cofucl  17231  fthsect  17268  fucidcl  17308  initoid  17341  termoid  17342  idahom  17400  catcisolem  17446  xpccatid  17518  1stfcl  17527  2ndfcl  17528  prfcl  17533  evlfcl  17552  curf1cl  17558  curf2cl  17561  curfcl  17562  curfuncf  17568  uncfcurf  17569  diag12  17574  diag2  17575  curf2ndf  17577  hofcl  17589  yon12  17595  yon2  17596  yonedalem3a  17604  yonedalem3b  17609  yonedainv  17611  bj-endmnd  35047
  Copyright terms: Public domain W3C validator