| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
| catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catidcl.i | ⊢ 1 = (Id‘𝐶) |
| catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | cidval 17645 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
| 8 | 1, 2, 3, 4, 6 | catideu 17643 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
| 9 | riotacl 7364 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
| 11 | 7, 10 | eqeltrd 2829 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 〈cop 4598 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-cat 17636 df-cid 17637 |
| This theorem is referenced by: oppccatid 17687 monsect 17752 sectid 17755 catsubcat 17808 fullsubc 17819 idfucl 17850 cofucl 17857 fthsect 17896 fucidcl 17937 initoid 17970 termoid 17971 idahom 18029 catcisolem 18079 xpccatid 18156 1stfcl 18165 2ndfcl 18166 prfcl 18171 evlfcl 18190 curf1cl 18196 curf2cl 18199 curfcl 18200 curfuncf 18206 uncfcurf 18207 diag12 18212 diag2 18213 curf2ndf 18215 hofcl 18227 yon12 18233 yon2 18234 yonedalem3a 18242 yonedalem3b 18247 yonedainv 18249 bj-endmnd 37313 catprs 49004 endmndlem 49008 idmon 49013 idepi 49014 discsubc 49057 imaid 49147 upciclem3 49161 swapfid 49272 tposcurf12 49291 tposcurf2 49293 fucoid 49341 thincid 49425 functhinclem4 49440 termchomn0 49477 idfudiag1 49518 termcarweu 49521 arweutermc 49523 |
| Copyright terms: Public domain | W3C validator |