| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
| catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catidcl.i | ⊢ 1 = (Id‘𝐶) |
| catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | cidval 17638 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
| 8 | 1, 2, 3, 4, 6 | catideu 17636 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
| 9 | riotacl 7361 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
| 11 | 7, 10 | eqeltrd 2828 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 〈cop 4595 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-cat 17629 df-cid 17630 |
| This theorem is referenced by: oppccatid 17680 monsect 17745 sectid 17748 catsubcat 17801 fullsubc 17812 idfucl 17843 cofucl 17850 fthsect 17889 fucidcl 17930 initoid 17963 termoid 17964 idahom 18022 catcisolem 18072 xpccatid 18149 1stfcl 18158 2ndfcl 18159 prfcl 18164 evlfcl 18183 curf1cl 18189 curf2cl 18192 curfcl 18193 curfuncf 18199 uncfcurf 18200 diag12 18205 diag2 18206 curf2ndf 18208 hofcl 18220 yon12 18226 yon2 18227 yonedalem3a 18235 yonedalem3b 18240 yonedainv 18242 bj-endmnd 37306 catprs 49000 endmndlem 49004 idmon 49009 idepi 49010 discsubc 49053 imaid 49143 upciclem3 49157 swapfid 49268 tposcurf12 49287 tposcurf2 49289 fucoid 49337 thincid 49421 functhinclem4 49436 termchomn0 49473 idfudiag1 49514 termcarweu 49517 arweutermc 49519 |
| Copyright terms: Public domain | W3C validator |