| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
| catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catidcl.i | ⊢ 1 = (Id‘𝐶) |
| catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2731 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | cidval 17578 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
| 8 | 1, 2, 3, 4, 6 | catideu 17576 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
| 9 | riotacl 7315 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
| 11 | 7, 10 | eqeltrd 2831 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 〈cop 4577 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 Basecbs 17115 Hom chom 17167 compcco 17168 Catccat 17565 Idccid 17566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-cat 17569 df-cid 17570 |
| This theorem is referenced by: oppccatid 17620 monsect 17685 sectid 17688 catsubcat 17741 fullsubc 17752 idfucl 17783 cofucl 17790 fthsect 17829 fucidcl 17870 initoid 17903 termoid 17904 idahom 17962 catcisolem 18012 xpccatid 18089 1stfcl 18098 2ndfcl 18099 prfcl 18104 evlfcl 18123 curf1cl 18129 curf2cl 18132 curfcl 18133 curfuncf 18139 uncfcurf 18140 diag12 18145 diag2 18146 curf2ndf 18148 hofcl 18160 yon12 18166 yon2 18167 yonedalem3a 18175 yonedalem3b 18180 yonedainv 18182 bj-endmnd 37352 catprs 49043 endmndlem 49047 idmon 49052 idepi 49053 discsubc 49096 imaid 49186 upciclem3 49200 swapfid 49311 tposcurf12 49330 tposcurf2 49332 fucoid 49380 thincid 49464 functhinclem4 49479 termchomn0 49516 idfudiag1 49557 termcarweu 49560 arweutermc 49562 |
| Copyright terms: Public domain | W3C validator |