MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Structured version   Visualization version   GIF version

Theorem catidcl 17727
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))

Proof of Theorem catidcl
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3 𝐵 = (Base‘𝐶)
2 catidcl.h . . 3 𝐻 = (Hom ‘𝐶)
3 eqid 2735 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 catidcl.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidcl.i . . 3 1 = (Id‘𝐶)
6 catidcl.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6cidval 17722 . 2 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
81, 2, 3, 4, 6catideu 17720 . . 3 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
9 riotacl 7405 . . 3 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
108, 9syl 17 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
117, 10eqeltrd 2839 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376  cop 4637  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-cat 17713  df-cid 17714
This theorem is referenced by:  oppccatid  17766  monsect  17831  sectid  17834  catsubcat  17890  fullsubc  17901  idfucl  17932  cofucl  17939  fthsect  17979  fucidcl  18022  initoid  18055  termoid  18056  idahom  18114  catcisolem  18164  xpccatid  18244  1stfcl  18253  2ndfcl  18254  prfcl  18259  evlfcl  18279  curf1cl  18285  curf2cl  18288  curfcl  18289  curfuncf  18295  uncfcurf  18296  diag12  18301  diag2  18302  curf2ndf  18304  hofcl  18316  yon12  18322  yon2  18323  yonedalem3a  18331  yonedalem3b  18336  yonedainv  18338  bj-endmnd  37301  catprs  48800  endmndlem  48804  idmon  48805  idepi  48806  upciclem3  48814  thincid  48833  functhinclem4  48844
  Copyright terms: Public domain W3C validator