| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
| catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catidcl.i | ⊢ 1 = (Id‘𝐶) |
| catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | cidval 17614 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
| 8 | 1, 2, 3, 4, 6 | catideu 17612 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
| 9 | riotacl 7343 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
| 11 | 7, 10 | eqeltrd 2828 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3349 〈cop 4591 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17601 Idccid 17602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-cat 17605 df-cid 17606 |
| This theorem is referenced by: oppccatid 17656 monsect 17721 sectid 17724 catsubcat 17777 fullsubc 17788 idfucl 17819 cofucl 17826 fthsect 17865 fucidcl 17906 initoid 17939 termoid 17940 idahom 17998 catcisolem 18048 xpccatid 18125 1stfcl 18134 2ndfcl 18135 prfcl 18140 evlfcl 18159 curf1cl 18165 curf2cl 18168 curfcl 18169 curfuncf 18175 uncfcurf 18176 diag12 18181 diag2 18182 curf2ndf 18184 hofcl 18196 yon12 18202 yon2 18203 yonedalem3a 18211 yonedalem3b 18216 yonedainv 18218 bj-endmnd 37279 catprs 48973 endmndlem 48977 idmon 48982 idepi 48983 discsubc 49026 imaid 49116 upciclem3 49130 swapfid 49241 tposcurf12 49260 tposcurf2 49262 fucoid 49310 thincid 49394 functhinclem4 49409 termchomn0 49446 idfudiag1 49487 termcarweu 49490 arweutermc 49492 |
| Copyright terms: Public domain | W3C validator |