Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > catidcl | Structured version Visualization version GIF version |
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
catidcl.b | ⊢ 𝐵 = (Base‘𝐶) |
catidcl.h | ⊢ 𝐻 = (Hom ‘𝐶) |
catidcl.i | ⊢ 1 = (Id‘𝐶) |
catidcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
catidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
catidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | catidcl.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2758 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | catidcl.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | catidcl.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | catidcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | cidval 17020 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) |
8 | 1, 2, 3, 4, 6 | catideu 17018 | . . 3 ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
9 | riotacl 7131 | . . 3 ⊢ (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋)) |
11 | 7, 10 | eqeltrd 2852 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃!wreu 3072 〈cop 4531 ‘cfv 6340 ℩crio 7113 (class class class)co 7156 Basecbs 16555 Hom chom 16648 compcco 16649 Catccat 17007 Idccid 17008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-cat 17011 df-cid 17012 |
This theorem is referenced by: oppccatid 17061 monsect 17126 sectid 17129 catsubcat 17182 fullsubc 17193 idfucl 17224 cofucl 17231 fthsect 17268 fucidcl 17308 initoid 17341 termoid 17342 idahom 17400 catcisolem 17446 xpccatid 17518 1stfcl 17527 2ndfcl 17528 prfcl 17533 evlfcl 17552 curf1cl 17558 curf2cl 17561 curfcl 17562 curfuncf 17568 uncfcurf 17569 diag12 17574 diag2 17575 curf2ndf 17577 hofcl 17589 yon12 17595 yon2 17596 yonedalem3a 17604 yonedalem3b 17609 yonedainv 17611 bj-endmnd 35047 |
Copyright terms: Public domain | W3C validator |