MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catrid Structured version   Visualization version   GIF version

Theorem catrid 17742
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catrid (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)

Proof of Theorem catrid
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑓 = 𝐹 → (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2756 . 2 (𝑓 = 𝐹 → ((𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 ↔ (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
4 oveq2 7456 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
5 oveq2 7456 . . . . . 6 (𝑦 = 𝑌 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑌))
65oveqd 7465 . . . . 5 (𝑦 = 𝑌 → (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
76eqeq1d 2742 . . . 4 (𝑦 = 𝑌 → ((𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
84, 7raleqbidv 3354 . . 3 (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
9 simpr 484 . . . . . . . 8 ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
109ralimi 3089 . . . . . . 7 (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
1110a1i 11 . . . . . 6 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
1211ss2rabi 4100 . . . . 5 {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓}
13 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
15 catlid.o . . . . . . 7 · = (comp‘𝐶)
16 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
17 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
18 catidcl.x . . . . . . 7 (𝜑𝑋𝐵)
1913, 14, 15, 16, 17, 18cidval 17735 . . . . . 6 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2013, 14, 15, 16, 18catideu 17733 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
21 riotacl2 7421 . . . . . . 7 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2319, 22eqeltrd 2844 . . . . 5 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2412, 23sselid 4006 . . . 4 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓})
25 oveq2 7456 . . . . . . . 8 (𝑔 = ( 1𝑋) → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)))
2625eqeq1d 2742 . . . . . . 7 (𝑔 = ( 1𝑋) → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
27262ralbidv 3227 . . . . . 6 (𝑔 = ( 1𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2827elrab 3708 . . . . 5 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2928simprbi 496 . . . 4 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
3024, 29syl 17 . . 3 (𝜑 → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
31 catlid.y . . 3 (𝜑𝑌𝐵)
328, 30, 31rspcdva 3636 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓)
33 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
343, 32, 33rspcdva 3636 1 (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  {crab 3443  cop 4654  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-cat 17726  df-cid 17727
This theorem is referenced by:  oppccatid  17779  sectcan  17816  monsect  17844  invisoinvl  17851  rcaninv  17855  subccatid  17910  fucidcl  18035  fucrid  18037  invfuc  18044  arwrid  18140  xpccatid  18257  curf2cl  18301  curfuncf  18308  uncfcurf  18309  hofcl  18329  yonedalem3b  18349  bj-endmnd  37284  endmndlem  48682  idepi  48684
  Copyright terms: Public domain W3C validator