MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catrid Structured version   Visualization version   GIF version

Theorem catrid 17645
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catrid (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)

Proof of Theorem catrid
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑓 = 𝐹 → (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2745 . 2 (𝑓 = 𝐹 → ((𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 ↔ (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
4 oveq2 7395 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
5 oveq2 7395 . . . . . 6 (𝑦 = 𝑌 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑌))
65oveqd 7404 . . . . 5 (𝑦 = 𝑌 → (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
76eqeq1d 2731 . . . 4 (𝑦 = 𝑌 → ((𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
84, 7raleqbidv 3319 . . 3 (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
9 simpr 484 . . . . . . . 8 ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
109ralimi 3066 . . . . . . 7 (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
1110a1i 11 . . . . . 6 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
1211ss2rabi 4040 . . . . 5 {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓}
13 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
15 catlid.o . . . . . . 7 · = (comp‘𝐶)
16 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
17 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
18 catidcl.x . . . . . . 7 (𝜑𝑋𝐵)
1913, 14, 15, 16, 17, 18cidval 17638 . . . . . 6 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2013, 14, 15, 16, 18catideu 17636 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
21 riotacl2 7360 . . . . . . 7 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2319, 22eqeltrd 2828 . . . . 5 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2412, 23sselid 3944 . . . 4 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓})
25 oveq2 7395 . . . . . . . 8 (𝑔 = ( 1𝑋) → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)))
2625eqeq1d 2731 . . . . . . 7 (𝑔 = ( 1𝑋) → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
27262ralbidv 3201 . . . . . 6 (𝑔 = ( 1𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2827elrab 3659 . . . . 5 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2928simprbi 496 . . . 4 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
3024, 29syl 17 . . 3 (𝜑 → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
31 catlid.y . . 3 (𝜑𝑌𝐵)
328, 30, 31rspcdva 3589 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓)
33 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
343, 32, 33rspcdva 3589 1 (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  {crab 3405  cop 4595  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-cat 17629  df-cid 17630
This theorem is referenced by:  oppccatid  17680  sectcan  17717  monsect  17745  invisoinvl  17752  rcaninv  17756  subccatid  17808  fucidcl  17930  fucrid  17932  invfuc  17939  arwrid  18035  xpccatid  18149  curf2cl  18192  curfuncf  18199  uncfcurf  18200  hofcl  18220  yonedalem3b  18240  bj-endmnd  37306  endmndlem  49001  idepi  49007  upeu2lem  49014  fucorid  49348  precofvalALT  49354  concom  49649
  Copyright terms: Public domain W3C validator