MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catrid Structured version   Visualization version   GIF version

Theorem catrid 17141
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catrid (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)

Proof of Theorem catrid
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7198 . . 3 (𝑓 = 𝐹 → (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2752 . 2 (𝑓 = 𝐹 → ((𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 ↔ (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
4 oveq2 7199 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
5 oveq2 7199 . . . . . 6 (𝑦 = 𝑌 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑌))
65oveqd 7208 . . . . 5 (𝑦 = 𝑌 → (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
76eqeq1d 2738 . . . 4 (𝑦 = 𝑌 → ((𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
84, 7raleqbidv 3303 . . 3 (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
9 simpr 488 . . . . . . . 8 ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
109ralimi 3073 . . . . . . 7 (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
1110a1i 11 . . . . . 6 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
1211ss2rabi 3976 . . . . 5 {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓}
13 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
15 catlid.o . . . . . . 7 · = (comp‘𝐶)
16 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
17 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
18 catidcl.x . . . . . . 7 (𝜑𝑋𝐵)
1913, 14, 15, 16, 17, 18cidval 17134 . . . . . 6 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2013, 14, 15, 16, 18catideu 17132 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
21 riotacl2 7165 . . . . . . 7 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2319, 22eqeltrd 2831 . . . . 5 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2412, 23sseldi 3885 . . . 4 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓})
25 oveq2 7199 . . . . . . . 8 (𝑔 = ( 1𝑋) → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)))
2625eqeq1d 2738 . . . . . . 7 (𝑔 = ( 1𝑋) → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
27262ralbidv 3110 . . . . . 6 (𝑔 = ( 1𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2827elrab 3591 . . . . 5 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2928simprbi 500 . . . 4 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
3024, 29syl 17 . . 3 (𝜑 → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
31 catlid.y . . 3 (𝜑𝑌𝐵)
328, 30, 31rspcdva 3529 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓)
33 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
343, 32, 33rspcdva 3529 1 (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  ∃!wreu 3053  {crab 3055  cop 4533  cfv 6358  crio 7147  (class class class)co 7191  Basecbs 16666  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-cat 17125  df-cid 17126
This theorem is referenced by:  oppccatid  17177  sectcan  17214  monsect  17242  invisoinvl  17249  rcaninv  17253  subccatid  17306  fucidcl  17428  fucrid  17430  invfuc  17437  arwrid  17533  xpccatid  17649  curf2cl  17693  curfuncf  17700  uncfcurf  17701  hofcl  17721  yonedalem3b  17741  bj-endmnd  35172  endmndlem  45912  idepi  45914
  Copyright terms: Public domain W3C validator