Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . 3
⊢ (𝑓 = 𝐹 → (𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋))) |
2 | | id 22 |
. . 3
⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) |
3 | 1, 2 | eqeq12d 2754 |
. 2
⊢ (𝑓 = 𝐹 → ((𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝑓 ↔ (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹)) |
4 | | oveq2 7283 |
. . . 4
⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) |
5 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (〈𝑋, 𝑋〉 · 𝑦) = (〈𝑋, 𝑋〉 · 𝑌)) |
6 | 5 | oveqd 7292 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = (𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋))) |
7 | 6 | eqeq1d 2740 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓 ↔ (𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝑓)) |
8 | 4, 7 | raleqbidv 3336 |
. . 3
⊢ (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝑓)) |
9 | | simpr 485 |
. . . . . . . 8
⊢
((∀𝑓 ∈
(𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) |
10 | 9 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) |
12 | 11 | ss2rabi 4010 |
. . . . 5
⊢ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓} |
13 | | catidcl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
14 | | catidcl.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐶) |
15 | | catlid.o |
. . . . . . 7
⊢ · =
(comp‘𝐶) |
16 | | catidcl.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
17 | | catidcl.i |
. . . . . . 7
⊢ 1 =
(Id‘𝐶) |
18 | | catidcl.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
19 | 13, 14, 15, 16, 17, 18 | cidval 17386 |
. . . . . 6
⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) |
20 | 13, 14, 15, 16, 18 | catideu 17384 |
. . . . . . 7
⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) |
21 | | riotacl2 7249 |
. . . . . . 7
⊢
(∃!𝑔 ∈
(𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)}) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)}) |
23 | 19, 22 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → ( 1 ‘𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)}) |
24 | 12, 23 | sselid 3919 |
. . . 4
⊢ (𝜑 → ( 1 ‘𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓}) |
25 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑔 = ( 1 ‘𝑋) → (𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = (𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋))) |
26 | 25 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑔 = ( 1 ‘𝑋) → ((𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓)) |
27 | 26 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑔 = ( 1 ‘𝑋) → (∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓 ↔ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓)) |
28 | 27 | elrab 3624 |
. . . . 5
⊢ (( 1 ‘𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓} ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓)) |
29 | 28 | simprbi 497 |
. . . 4
⊢ (( 1 ‘𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓} → ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓) |
30 | 24, 29 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)( 1 ‘𝑋)) = 𝑓) |
31 | | catlid.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
32 | 8, 30, 31 | rspcdva 3562 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝑓) |
33 | | catlid.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
34 | 3, 32, 33 | rspcdva 3562 |
1
⊢ (𝜑 → (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹) |