MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catrid Structured version   Visualization version   GIF version

Theorem catrid 17621
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catrid (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)

Proof of Theorem catrid
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . 3 (𝑓 = 𝐹 → (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
2 id 22 . . 3 (𝑓 = 𝐹𝑓 = 𝐹)
31, 2eqeq12d 2745 . 2 (𝑓 = 𝐹 → ((𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 ↔ (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
4 oveq2 7377 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
5 oveq2 7377 . . . . . 6 (𝑦 = 𝑌 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑌))
65oveqd 7386 . . . . 5 (𝑦 = 𝑌 → (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
76eqeq1d 2731 . . . 4 (𝑦 = 𝑌 → ((𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
84, 7raleqbidv 3316 . . 3 (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
9 simpr 484 . . . . . . . 8 ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
109ralimi 3066 . . . . . . 7 (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
1110a1i 11 . . . . . 6 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
1211ss2rabi 4036 . . . . 5 {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓}
13 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
14 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
15 catlid.o . . . . . . 7 · = (comp‘𝐶)
16 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
17 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
18 catidcl.x . . . . . . 7 (𝜑𝑋𝐵)
1913, 14, 15, 16, 17, 18cidval 17614 . . . . . 6 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
2013, 14, 15, 16, 18catideu 17612 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
21 riotacl2 7342 . . . . . . 7 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2319, 22eqeltrd 2828 . . . . 5 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
2412, 23sselid 3941 . . . 4 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓})
25 oveq2 7377 . . . . . . . 8 (𝑔 = ( 1𝑋) → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)))
2625eqeq1d 2731 . . . . . . 7 (𝑔 = ( 1𝑋) → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
27262ralbidv 3199 . . . . . 6 (𝑔 = ( 1𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2827elrab 3656 . . . . 5 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2928simprbi 496 . . . 4 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
3024, 29syl 17 . . 3 (𝜑 → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
31 catlid.y . . 3 (𝜑𝑌𝐵)
328, 30, 31rspcdva 3586 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓)
33 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
343, 32, 33rspcdva 3586 1 (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  {crab 3402  cop 4591  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-cat 17605  df-cid 17606
This theorem is referenced by:  oppccatid  17656  sectcan  17693  monsect  17721  invisoinvl  17728  rcaninv  17732  subccatid  17784  fucidcl  17906  fucrid  17908  invfuc  17915  arwrid  18011  xpccatid  18125  curf2cl  18168  curfuncf  18175  uncfcurf  18176  hofcl  18196  yonedalem3b  18216  bj-endmnd  37279  endmndlem  48977  idepi  48983  upeu2lem  48990  fucorid  49324  precofvalALT  49330  concom  49625
  Copyright terms: Public domain W3C validator