Step | Hyp | Ref
| Expression |
1 | | dfac3 10057 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
2 | | raleq 3309 |
. . . . . 6
⊢ (𝑎 = 𝑥 → (∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
3 | 2 | exbidv 1924 |
. . . . 5
⊢ (𝑎 = 𝑥 → (∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
4 | 3 | cbvalvw 2039 |
. . . 4
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
5 | | neeq1 3006 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅)) |
6 | | fveq2 6842 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → (𝑐‘𝑑) = (𝑐‘𝑧)) |
7 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → 𝑑 = 𝑧) |
8 | 6, 7 | eleq12d 2832 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → ((𝑐‘𝑑) ∈ 𝑑 ↔ (𝑐‘𝑧) ∈ 𝑧)) |
9 | 5, 8 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧))) |
10 | 9 | cbvralvw 3225 |
. . . . . . . 8
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧)) |
11 | | fveq2 6842 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → (𝑐‘𝑏) = (𝑐‘𝑧)) |
12 | 11 | sneqd 4598 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → {(𝑐‘𝑏)} = {(𝑐‘𝑧)}) |
13 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) |
14 | | snex 5388 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ∈ V |
15 | 12, 13, 14 | fvmpt 6948 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑥 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
17 | | simp3 1138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → (𝑐‘𝑧) ∈ 𝑧) |
18 | 17 | snssd 4769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ⊆ 𝑧) |
19 | 14 | elpw 4564 |
. . . . . . . . . . . . . . 15
⊢ ({(𝑐‘𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐‘𝑧)} ⊆ 𝑧) |
20 | 18, 19 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ 𝒫 𝑧) |
21 | | snfi 8988 |
. . . . . . . . . . . . . . 15
⊢ {(𝑐‘𝑧)} ∈ Fin |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ Fin) |
23 | 20, 22 | elind 4154 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin)) |
24 | | fvex 6855 |
. . . . . . . . . . . . . . 15
⊢ (𝑐‘𝑧) ∈ V |
25 | 24 | snnz 4737 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ≠ ∅ |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ≠ ∅) |
27 | | eldifsn 4747 |
. . . . . . . . . . . . 13
⊢ ({(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔
({(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐‘𝑧)} ≠ ∅)) |
28 | 23, 26, 27 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
29 | 16, 28 | eqeltrd 2838 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
30 | 29 | 3exp 1119 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ((𝑐‘𝑧) ∈ 𝑧 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
31 | 30 | a2d 29 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
32 | 31 | ralimia 3083 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
33 | 10, 32 | sylbi 216 |
. . . . . . 7
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
34 | | vex 3449 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
35 | 34 | mptex 7173 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) ∈ V |
36 | | fveq1 6841 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (𝑓‘𝑧) = ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧)) |
37 | 36 | eleq1d 2822 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
38 | 37 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
39 | 38 | ralbidv 3174 |
. . . . . . . 8
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
40 | 35, 39 | spcev 3565 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
41 | 33, 40 | syl 17 |
. . . . . 6
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
42 | 41 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
43 | 42 | alimi 1813 |
. . . 4
⊢
(∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
44 | 4, 43 | sylbi 216 |
. . 3
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
45 | 1, 44 | sylbi 216 |
. 2
⊢
(CHOICE → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
46 | | fvex 6855 |
. . . . . . 7
⊢
(𝑅1‘(rank‘𝑎)) ∈ V |
47 | 46 | pwex 5335 |
. . . . . 6
⊢ 𝒫
(𝑅1‘(rank‘𝑎)) ∈ V |
48 | | raleq 3309 |
. . . . . . 7
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
49 | 48 | exbidv 1924 |
. . . . . 6
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
50 | 47, 49 | spcv 3564 |
. . . . 5
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
51 | | rankon 9731 |
. . . . . . . 8
⊢
(rank‘𝑎)
∈ On |
52 | 51 | a1i 11 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
(rank‘𝑎) ∈
On) |
53 | | id 22 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
54 | 52, 53 | aomclem8 41374 |
. . . . . 6
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
55 | 54 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
56 | | vex 3449 |
. . . . . 6
⊢ 𝑎 ∈ V |
57 | | r1rankid 9795 |
. . . . . 6
⊢ (𝑎 ∈ V → 𝑎 ⊆
(𝑅1‘(rank‘𝑎))) |
58 | | wess 5620 |
. . . . . . 7
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (𝑏 We
(𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎)) |
59 | 58 | eximdv 1920 |
. . . . . 6
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)) |
60 | 56, 57, 59 | mp2b 10 |
. . . . 5
⊢
(∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎) |
61 | 50, 55, 60 | 3syl 18 |
. . . 4
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We 𝑎) |
62 | 61 | alrimiv 1930 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑎∃𝑏 𝑏 We 𝑎) |
63 | | dfac8 10071 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑏 𝑏 We 𝑎) |
64 | 62, 63 | sylibr 233 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
CHOICE) |
65 | 45, 64 | impbii 208 |
1
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |