Step | Hyp | Ref
| Expression |
1 | | dfac3 9808 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
2 | | raleq 3333 |
. . . . . 6
⊢ (𝑎 = 𝑥 → (∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
3 | 2 | exbidv 1925 |
. . . . 5
⊢ (𝑎 = 𝑥 → (∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
4 | 3 | cbvalvw 2040 |
. . . 4
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
5 | | neeq1 3005 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅)) |
6 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → (𝑐‘𝑑) = (𝑐‘𝑧)) |
7 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → 𝑑 = 𝑧) |
8 | 6, 7 | eleq12d 2833 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → ((𝑐‘𝑑) ∈ 𝑑 ↔ (𝑐‘𝑧) ∈ 𝑧)) |
9 | 5, 8 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧))) |
10 | 9 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧)) |
11 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → (𝑐‘𝑏) = (𝑐‘𝑧)) |
12 | 11 | sneqd 4570 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → {(𝑐‘𝑏)} = {(𝑐‘𝑧)}) |
13 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) |
14 | | snex 5349 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ∈ V |
15 | 12, 13, 14 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑥 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
17 | | simp3 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → (𝑐‘𝑧) ∈ 𝑧) |
18 | 17 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ⊆ 𝑧) |
19 | 14 | elpw 4534 |
. . . . . . . . . . . . . . 15
⊢ ({(𝑐‘𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐‘𝑧)} ⊆ 𝑧) |
20 | 18, 19 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ 𝒫 𝑧) |
21 | | snfi 8788 |
. . . . . . . . . . . . . . 15
⊢ {(𝑐‘𝑧)} ∈ Fin |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ Fin) |
23 | 20, 22 | elind 4124 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin)) |
24 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝑐‘𝑧) ∈ V |
25 | 24 | snnz 4709 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ≠ ∅ |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ≠ ∅) |
27 | | eldifsn 4717 |
. . . . . . . . . . . . 13
⊢ ({(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔
({(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐‘𝑧)} ≠ ∅)) |
28 | 23, 26, 27 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
29 | 16, 28 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
30 | 29 | 3exp 1117 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ((𝑐‘𝑧) ∈ 𝑧 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
31 | 30 | a2d 29 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
32 | 31 | ralimia 3084 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
33 | 10, 32 | sylbi 216 |
. . . . . . 7
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
34 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
35 | 34 | mptex 7081 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) ∈ V |
36 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (𝑓‘𝑧) = ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧)) |
37 | 36 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
38 | 37 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
39 | 38 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
40 | 35, 39 | spcev 3535 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
41 | 33, 40 | syl 17 |
. . . . . 6
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
42 | 41 | exlimiv 1934 |
. . . . 5
⊢
(∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
43 | 42 | alimi 1815 |
. . . 4
⊢
(∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
44 | 4, 43 | sylbi 216 |
. . 3
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
45 | 1, 44 | sylbi 216 |
. 2
⊢
(CHOICE → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
46 | | fvex 6769 |
. . . . . . 7
⊢
(𝑅1‘(rank‘𝑎)) ∈ V |
47 | 46 | pwex 5298 |
. . . . . 6
⊢ 𝒫
(𝑅1‘(rank‘𝑎)) ∈ V |
48 | | raleq 3333 |
. . . . . . 7
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
49 | 48 | exbidv 1925 |
. . . . . 6
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
50 | 47, 49 | spcv 3534 |
. . . . 5
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
51 | | rankon 9484 |
. . . . . . . 8
⊢
(rank‘𝑎)
∈ On |
52 | 51 | a1i 11 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
(rank‘𝑎) ∈
On) |
53 | | id 22 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
54 | 52, 53 | aomclem8 40802 |
. . . . . 6
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
55 | 54 | exlimiv 1934 |
. . . . 5
⊢
(∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
56 | | vex 3426 |
. . . . . 6
⊢ 𝑎 ∈ V |
57 | | r1rankid 9548 |
. . . . . 6
⊢ (𝑎 ∈ V → 𝑎 ⊆
(𝑅1‘(rank‘𝑎))) |
58 | | wess 5567 |
. . . . . . 7
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (𝑏 We
(𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎)) |
59 | 58 | eximdv 1921 |
. . . . . 6
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)) |
60 | 56, 57, 59 | mp2b 10 |
. . . . 5
⊢
(∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎) |
61 | 50, 55, 60 | 3syl 18 |
. . . 4
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We 𝑎) |
62 | 61 | alrimiv 1931 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑎∃𝑏 𝑏 We 𝑎) |
63 | | dfac8 9822 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑏 𝑏 We 𝑎) |
64 | 62, 63 | sylibr 233 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
CHOICE) |
65 | 45, 64 | impbii 208 |
1
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |