Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Structured version   Visualization version   GIF version

Theorem dfac11 42760
Description: The right-hand side of this theorem (compare with ac4 10509), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 9628, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Distinct variable group:   𝑥,𝑧,𝑓

Proof of Theorem dfac11
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 10157 . . 3 (CHOICE ↔ ∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
2 raleq 3312 . . . . . 6 (𝑎 = 𝑥 → (∀𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
32exbidv 1917 . . . . 5 (𝑎 = 𝑥 → (∃𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
43cbvalvw 2032 . . . 4 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
5 neeq1 2993 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 fveq2 6893 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑐𝑑) = (𝑐𝑧))
7 id 22 . . . . . . . . . . 11 (𝑑 = 𝑧𝑑 = 𝑧)
86, 7eleq12d 2820 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑐𝑑) ∈ 𝑑 ↔ (𝑐𝑧) ∈ 𝑧))
95, 8imbi12d 343 . . . . . . . . 9 (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧)))
109cbvralvw 3225 . . . . . . . 8 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧))
11 fveq2 6893 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → (𝑐𝑏) = (𝑐𝑧))
1211sneqd 4635 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 → {(𝑐𝑏)} = {(𝑐𝑧)})
13 eqid 2726 . . . . . . . . . . . . . 14 (𝑏𝑥 ↦ {(𝑐𝑏)}) = (𝑏𝑥 ↦ {(𝑐𝑏)})
14 snex 5429 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ∈ V
1512, 13, 14fvmpt 7001 . . . . . . . . . . . . 13 (𝑧𝑥 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
16153ad2ant1 1130 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
17 simp3 1135 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → (𝑐𝑧) ∈ 𝑧)
1817snssd 4808 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ⊆ 𝑧)
1914elpw 4601 . . . . . . . . . . . . . . 15 ({(𝑐𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐𝑧)} ⊆ 𝑧)
2018, 19sylibr 233 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ 𝒫 𝑧)
21 snfi 9073 . . . . . . . . . . . . . . 15 {(𝑐𝑧)} ∈ Fin
2221a1i 11 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ Fin)
2320, 22elind 4192 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin))
24 fvex 6906 . . . . . . . . . . . . . . 15 (𝑐𝑧) ∈ V
2524snnz 4775 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ≠ ∅
2625a1i 11 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ≠ ∅)
27 eldifsn 4785 . . . . . . . . . . . . 13 ({(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ({(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐𝑧)} ≠ ∅))
2823, 26, 27sylanbrc 581 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
2916, 28eqeltrd 2826 . . . . . . . . . . 11 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
30293exp 1116 . . . . . . . . . 10 (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑐𝑧) ∈ 𝑧 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3130a2d 29 . . . . . . . . 9 (𝑧𝑥 → ((𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3231ralimia 3070 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3310, 32sylbi 216 . . . . . . 7 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
34 vex 3466 . . . . . . . . 9 𝑥 ∈ V
3534mptex 7232 . . . . . . . 8 (𝑏𝑥 ↦ {(𝑐𝑏)}) ∈ V
36 fveq1 6892 . . . . . . . . . . 11 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (𝑓𝑧) = ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧))
3736eleq1d 2811 . . . . . . . . . 10 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3837imbi2d 339 . . . . . . . . 9 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3938ralbidv 3168 . . . . . . . 8 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4035, 39spcev 3591 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4133, 40syl 17 . . . . . 6 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4241exlimiv 1926 . . . . 5 (∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4342alimi 1806 . . . 4 (∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
444, 43sylbi 216 . . 3 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
451, 44sylbi 216 . 2 (CHOICE → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
46 fvex 6906 . . . . . . 7 (𝑅1‘(rank‘𝑎)) ∈ V
4746pwex 5376 . . . . . 6 𝒫 (𝑅1‘(rank‘𝑎)) ∈ V
48 raleq 3312 . . . . . . 7 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4948exbidv 1917 . . . . . 6 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
5047, 49spcv 3590 . . . . 5 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
51 rankon 9831 . . . . . . . 8 (rank‘𝑎) ∈ On
5251a1i 11 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → (rank‘𝑎) ∈ On)
53 id 22 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
5452, 53aomclem8 42759 . . . . . 6 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
5554exlimiv 1926 . . . . 5 (∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
56 vex 3466 . . . . . 6 𝑎 ∈ V
57 r1rankid 9895 . . . . . 6 (𝑎 ∈ V → 𝑎 ⊆ (𝑅1‘(rank‘𝑎)))
58 wess 5661 . . . . . . 7 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (𝑏 We (𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎))
5958eximdv 1913 . . . . . 6 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎))
6056, 57, 59mp2b 10 . . . . 5 (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)
6150, 55, 603syl 18 . . . 4 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We 𝑎)
6261alrimiv 1923 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑎𝑏 𝑏 We 𝑎)
63 dfac8 10171 . . 3 (CHOICE ↔ ∀𝑎𝑏 𝑏 We 𝑎)
6462, 63sylibr 233 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → CHOICE)
6545, 64impbii 208 1 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084  wal 1532   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cdif 3943  cin 3945  wss 3946  c0 4322  𝒫 cpw 4597  {csn 4623  cmpt 5228   We wwe 5628  Oncon0 6368  cfv 6546  Fincfn 8966  𝑅1cr1 9798  rankcrnk 9799  CHOICEwac 10151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-reg 9628  ax-inf2 9677
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-map 8849  df-en 8967  df-fin 8970  df-sup 9478  df-r1 9800  df-rank 9801  df-card 9975  df-ac 10152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator