Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Structured version   Visualization version   GIF version

Theorem dfac11 40887
Description: The right-hand side of this theorem (compare with ac4 10231), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 9351, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Distinct variable group:   𝑥,𝑧,𝑓

Proof of Theorem dfac11
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9877 . . 3 (CHOICE ↔ ∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
2 raleq 3342 . . . . . 6 (𝑎 = 𝑥 → (∀𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
32exbidv 1924 . . . . 5 (𝑎 = 𝑥 → (∃𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
43cbvalvw 2039 . . . 4 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
5 neeq1 3006 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 fveq2 6774 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑐𝑑) = (𝑐𝑧))
7 id 22 . . . . . . . . . . 11 (𝑑 = 𝑧𝑑 = 𝑧)
86, 7eleq12d 2833 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑐𝑑) ∈ 𝑑 ↔ (𝑐𝑧) ∈ 𝑧))
95, 8imbi12d 345 . . . . . . . . 9 (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧)))
109cbvralvw 3383 . . . . . . . 8 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧))
11 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → (𝑐𝑏) = (𝑐𝑧))
1211sneqd 4573 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 → {(𝑐𝑏)} = {(𝑐𝑧)})
13 eqid 2738 . . . . . . . . . . . . . 14 (𝑏𝑥 ↦ {(𝑐𝑏)}) = (𝑏𝑥 ↦ {(𝑐𝑏)})
14 snex 5354 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ∈ V
1512, 13, 14fvmpt 6875 . . . . . . . . . . . . 13 (𝑧𝑥 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
16153ad2ant1 1132 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
17 simp3 1137 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → (𝑐𝑧) ∈ 𝑧)
1817snssd 4742 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ⊆ 𝑧)
1914elpw 4537 . . . . . . . . . . . . . . 15 ({(𝑐𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐𝑧)} ⊆ 𝑧)
2018, 19sylibr 233 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ 𝒫 𝑧)
21 snfi 8834 . . . . . . . . . . . . . . 15 {(𝑐𝑧)} ∈ Fin
2221a1i 11 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ Fin)
2320, 22elind 4128 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin))
24 fvex 6787 . . . . . . . . . . . . . . 15 (𝑐𝑧) ∈ V
2524snnz 4712 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ≠ ∅
2625a1i 11 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ≠ ∅)
27 eldifsn 4720 . . . . . . . . . . . . 13 ({(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ({(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐𝑧)} ≠ ∅))
2823, 26, 27sylanbrc 583 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
2916, 28eqeltrd 2839 . . . . . . . . . . 11 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
30293exp 1118 . . . . . . . . . 10 (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑐𝑧) ∈ 𝑧 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3130a2d 29 . . . . . . . . 9 (𝑧𝑥 → ((𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3231ralimia 3085 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3310, 32sylbi 216 . . . . . . 7 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
34 vex 3436 . . . . . . . . 9 𝑥 ∈ V
3534mptex 7099 . . . . . . . 8 (𝑏𝑥 ↦ {(𝑐𝑏)}) ∈ V
36 fveq1 6773 . . . . . . . . . . 11 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (𝑓𝑧) = ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧))
3736eleq1d 2823 . . . . . . . . . 10 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3837imbi2d 341 . . . . . . . . 9 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3938ralbidv 3112 . . . . . . . 8 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4035, 39spcev 3545 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4133, 40syl 17 . . . . . 6 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4241exlimiv 1933 . . . . 5 (∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4342alimi 1814 . . . 4 (∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
444, 43sylbi 216 . . 3 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
451, 44sylbi 216 . 2 (CHOICE → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
46 fvex 6787 . . . . . . 7 (𝑅1‘(rank‘𝑎)) ∈ V
4746pwex 5303 . . . . . 6 𝒫 (𝑅1‘(rank‘𝑎)) ∈ V
48 raleq 3342 . . . . . . 7 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4948exbidv 1924 . . . . . 6 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
5047, 49spcv 3544 . . . . 5 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
51 rankon 9553 . . . . . . . 8 (rank‘𝑎) ∈ On
5251a1i 11 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → (rank‘𝑎) ∈ On)
53 id 22 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
5452, 53aomclem8 40886 . . . . . 6 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
5554exlimiv 1933 . . . . 5 (∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
56 vex 3436 . . . . . 6 𝑎 ∈ V
57 r1rankid 9617 . . . . . 6 (𝑎 ∈ V → 𝑎 ⊆ (𝑅1‘(rank‘𝑎)))
58 wess 5576 . . . . . . 7 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (𝑏 We (𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎))
5958eximdv 1920 . . . . . 6 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎))
6056, 57, 59mp2b 10 . . . . 5 (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)
6150, 55, 603syl 18 . . . 4 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We 𝑎)
6261alrimiv 1930 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑎𝑏 𝑏 We 𝑎)
63 dfac8 9891 . . 3 (CHOICE ↔ ∀𝑎𝑏 𝑏 We 𝑎)
6462, 63sylibr 233 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → CHOICE)
6545, 64impbii 208 1 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cmpt 5157   We wwe 5543  Oncon0 6266  cfv 6433  Fincfn 8733  𝑅1cr1 9520  rankcrnk 9521  CHOICEwac 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-map 8617  df-en 8734  df-fin 8737  df-sup 9201  df-r1 9522  df-rank 9523  df-card 9697  df-ac 9872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator