| Step | Hyp | Ref
| Expression |
| 1 | | dfac3 10162 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
| 2 | | raleq 3322 |
. . . . . 6
⊢ (𝑎 = 𝑥 → (∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
| 3 | 2 | exbidv 1920 |
. . . . 5
⊢ (𝑎 = 𝑥 → (∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑))) |
| 4 | 3 | cbvalvw 2034 |
. . . 4
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑)) |
| 5 | | neeq1 3002 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅)) |
| 6 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → (𝑐‘𝑑) = (𝑐‘𝑧)) |
| 7 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → 𝑑 = 𝑧) |
| 8 | 6, 7 | eleq12d 2834 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → ((𝑐‘𝑑) ∈ 𝑑 ↔ (𝑐‘𝑧) ∈ 𝑧)) |
| 9 | 5, 8 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧))) |
| 10 | 9 | cbvralvw 3236 |
. . . . . . . 8
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧)) |
| 11 | | fveq2 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → (𝑐‘𝑏) = (𝑐‘𝑧)) |
| 12 | 11 | sneqd 4637 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → {(𝑐‘𝑏)} = {(𝑐‘𝑧)}) |
| 13 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) |
| 14 | | snex 5435 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ∈ V |
| 15 | 12, 13, 14 | fvmpt 7015 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑥 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) = {(𝑐‘𝑧)}) |
| 17 | | simp3 1138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → (𝑐‘𝑧) ∈ 𝑧) |
| 18 | 17 | snssd 4808 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ⊆ 𝑧) |
| 19 | 14 | elpw 4603 |
. . . . . . . . . . . . . . 15
⊢ ({(𝑐‘𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐‘𝑧)} ⊆ 𝑧) |
| 20 | 18, 19 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ 𝒫 𝑧) |
| 21 | | snfi 9084 |
. . . . . . . . . . . . . . 15
⊢ {(𝑐‘𝑧)} ∈ Fin |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ Fin) |
| 23 | 20, 22 | elind 4199 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin)) |
| 24 | | fvex 6918 |
. . . . . . . . . . . . . . 15
⊢ (𝑐‘𝑧) ∈ V |
| 25 | 24 | snnz 4775 |
. . . . . . . . . . . . . 14
⊢ {(𝑐‘𝑧)} ≠ ∅ |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ≠ ∅) |
| 27 | | eldifsn 4785 |
. . . . . . . . . . . . 13
⊢ ({(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔
({(𝑐‘𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐‘𝑧)} ≠ ∅)) |
| 28 | 23, 26, 27 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → {(𝑐‘𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
| 29 | 16, 28 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ∧ (𝑐‘𝑧) ∈ 𝑧) → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})) |
| 30 | 29 | 3exp 1119 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ((𝑐‘𝑧) ∈ 𝑧 → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 31 | 30 | a2d 29 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 32 | 31 | ralimia 3079 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑐‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 33 | 10, 32 | sylbi 217 |
. . . . . . 7
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 34 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 35 | 34 | mptex 7244 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) ∈ V |
| 36 | | fveq1 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (𝑓‘𝑧) = ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧)) |
| 37 | 36 | eleq1d 2825 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 38 | 37 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 39 | 38 | ralbidv 3177 |
. . . . . . . 8
⊢ (𝑓 = (𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)}) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 40 | 35, 39 | spcev 3605 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ((𝑏 ∈ 𝑥 ↦ {(𝑐‘𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 41 | 33, 40 | syl 17 |
. . . . . 6
⊢
(∀𝑑 ∈
𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 42 | 41 | exlimiv 1929 |
. . . . 5
⊢
(∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 43 | 42 | alimi 1810 |
. . . 4
⊢
(∀𝑥∃𝑐∀𝑑 ∈ 𝑥 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 44 | 4, 43 | sylbi 217 |
. . 3
⊢
(∀𝑎∃𝑐∀𝑑 ∈ 𝑎 (𝑑 ≠ ∅ → (𝑐‘𝑑) ∈ 𝑑) → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 45 | 1, 44 | sylbi 217 |
. 2
⊢
(CHOICE → ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 46 | | fvex 6918 |
. . . . . . 7
⊢
(𝑅1‘(rank‘𝑎)) ∈ V |
| 47 | 46 | pwex 5379 |
. . . . . 6
⊢ 𝒫
(𝑅1‘(rank‘𝑎)) ∈ V |
| 48 | | raleq 3322 |
. . . . . . 7
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 49 | 48 | exbidv 1920 |
. . . . . 6
⊢ (𝑥 = 𝒫
(𝑅1‘(rank‘𝑎)) → (∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅})))) |
| 50 | 47, 49 | spcv 3604 |
. . . . 5
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 51 | | rankon 9836 |
. . . . . . . 8
⊢
(rank‘𝑎)
∈ On |
| 52 | 51 | a1i 11 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
(rank‘𝑎) ∈
On) |
| 53 | | id 22 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |
| 54 | 52, 53 | aomclem8 43078 |
. . . . . 6
⊢
(∀𝑧 ∈
𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
| 55 | 54 | exlimiv 1929 |
. . . . 5
⊢
(∃𝑓∀𝑧 ∈ 𝒫
(𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎))) |
| 56 | | vex 3483 |
. . . . . 6
⊢ 𝑎 ∈ V |
| 57 | | r1rankid 9900 |
. . . . . 6
⊢ (𝑎 ∈ V → 𝑎 ⊆
(𝑅1‘(rank‘𝑎))) |
| 58 | | wess 5670 |
. . . . . . 7
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (𝑏 We
(𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎)) |
| 59 | 58 | eximdv 1916 |
. . . . . 6
⊢ (𝑎 ⊆
(𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)) |
| 60 | 56, 57, 59 | mp2b 10 |
. . . . 5
⊢
(∃𝑏 𝑏 We
(𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎) |
| 61 | 50, 55, 60 | 3syl 18 |
. . . 4
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∃𝑏 𝑏 We 𝑎) |
| 62 | 61 | alrimiv 1926 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
∀𝑎∃𝑏 𝑏 We 𝑎) |
| 63 | | dfac8 10177 |
. . 3
⊢
(CHOICE ↔ ∀𝑎∃𝑏 𝑏 We 𝑎) |
| 64 | 62, 63 | sylibr 234 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) →
CHOICE) |
| 65 | 45, 64 | impbii 209 |
1
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖
{∅}))) |