Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32le Structured version   Visualization version   GIF version

Theorem cdleme32le 37691
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32le ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑋,𝑠,𝑡,𝑥,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,𝑌   𝑧,𝐻   𝑧,𝐾   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32le
StepHypRef Expression
1 simpl1 1188 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simpl2l 1223 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
3 simpl2r 1224 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑌𝐵)
4 simpr 488 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
5 simpl3 1190 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
6 cdleme32.b . . . 4 𝐵 = (Base‘𝐾)
7 cdleme32.l . . . 4 = (le‘𝐾)
8 cdleme32.j . . . 4 = (join‘𝐾)
9 cdleme32.m . . . 4 = (meet‘𝐾)
10 cdleme32.a . . . 4 𝐴 = (Atoms‘𝐾)
11 cdleme32.h . . . 4 𝐻 = (LHyp‘𝐾)
12 cdleme32.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
13 cdleme32.c . . . 4 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
14 cdleme32.d . . . 4 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
15 cdleme32.e . . . 4 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
16 cdleme32.i . . . 4 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
17 cdleme32.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
18 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
19 cdleme32.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
206, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme32d 37688 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
211, 2, 3, 4, 5, 20syl131anc 1380 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
22 simp11 1200 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
23 simp12 1201 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑋𝐵𝑌𝐵))
24 simp3 1135 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
25 simp2 1134 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
26 simp13 1202 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme32f 37690 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
2822, 23, 24, 25, 26, 27syl131anc 1380 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
29283exp 1116 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃𝑄 ∧ ¬ 𝑌 𝑊) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌))))
30 simp13 1202 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
31 simp12l 1283 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
32 simp3 1135 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
3319cdleme31fv2 37637 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
3431, 32, 33syl2anc 587 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
35 simp12r 1284 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑌𝐵)
36 simp2 1134 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
3719cdleme31fv2 37637 . . . . . . 7 ((𝑌𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) → (𝐹𝑌) = 𝑌)
3835, 36, 37syl2anc 587 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑌) = 𝑌)
3930, 34, 383brtr4d 5084 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
40393exp 1116 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌))))
4129, 40pm2.61d 182 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌)))
4241imp 410 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
4321, 42pm2.61dan 812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  ifcif 4450   class class class wbr 5052  cmpt 5132  cfv 6343  crio 7106  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Atomscatm 36507  HLchlt 36594  LHypclh 37228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-riotaBAD 36197
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-undef 7935  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36420  df-ol 36422  df-oml 36423  df-covers 36510  df-ats 36511  df-atl 36542  df-cvlat 36566  df-hlat 36595  df-llines 36742  df-lplanes 36743  df-lvols 36744  df-lines 36745  df-psubsp 36747  df-pmap 36748  df-padd 37040  df-lhyp 37232
This theorem is referenced by:  cdlemeg49le  37755  cdlemeg49lebilem  37783
  Copyright terms: Public domain W3C validator