Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32le Structured version   Visualization version   GIF version

Theorem cdleme32le 40426
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32le ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑋,𝑠,𝑡,𝑥,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,𝑌   𝑧,𝐻   𝑧,𝐾   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32le
StepHypRef Expression
1 simpl1 1192 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simpl2l 1227 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
3 simpl2r 1228 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑌𝐵)
4 simpr 484 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
5 simpl3 1194 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
6 cdleme32.b . . . 4 𝐵 = (Base‘𝐾)
7 cdleme32.l . . . 4 = (le‘𝐾)
8 cdleme32.j . . . 4 = (join‘𝐾)
9 cdleme32.m . . . 4 = (meet‘𝐾)
10 cdleme32.a . . . 4 𝐴 = (Atoms‘𝐾)
11 cdleme32.h . . . 4 𝐻 = (LHyp‘𝐾)
12 cdleme32.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
13 cdleme32.c . . . 4 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
14 cdleme32.d . . . 4 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
15 cdleme32.e . . . 4 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
16 cdleme32.i . . . 4 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
17 cdleme32.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
18 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
19 cdleme32.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
206, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme32d 40423 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
211, 2, 3, 4, 5, 20syl131anc 1385 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
22 simp11 1204 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
23 simp12 1205 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑋𝐵𝑌𝐵))
24 simp3 1138 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
25 simp2 1137 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
26 simp13 1206 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme32f 40425 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
2822, 23, 24, 25, 26, 27syl131anc 1385 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
29283exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃𝑄 ∧ ¬ 𝑌 𝑊) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌))))
30 simp13 1206 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 𝑌)
31 simp12l 1287 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
32 simp3 1138 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
3319cdleme31fv2 40372 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
3431, 32, 33syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
35 simp12r 1288 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑌𝐵)
36 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
3719cdleme31fv2 40372 . . . . . . 7 ((𝑌𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) → (𝐹𝑌) = 𝑌)
3835, 36, 37syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑌) = 𝑌)
3930, 34, 383brtr4d 5124 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
40393exp 1119 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ (𝑃𝑄 ∧ ¬ 𝑌 𝑊) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌))))
4129, 40pm2.61d 179 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) → (𝐹𝑋) (𝐹𝑌)))
4241imp 406 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) (𝐹𝑌))
4321, 42pm2.61dan 812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4476   class class class wbr 5092  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39242  HLchlt 39329  LHypclh 39963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967
This theorem is referenced by:  cdlemeg49le  40490  cdlemeg49lebilem  40518
  Copyright terms: Public domain W3C validator