Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ldil Structured version   Visualization version   GIF version

Theorem cdleme50ldil 39723
Description: Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐡 = (Baseβ€˜πΎ)
cdlemef50.l ≀ = (leβ€˜πΎ)
cdlemef50.j ∨ = (joinβ€˜πΎ)
cdlemef50.m ∧ = (meetβ€˜πΎ)
cdlemef50.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef50.h 𝐻 = (LHypβ€˜πΎ)
cdlemef50.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef50.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs50.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef50.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
cdleme50ldil.i 𝐢 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdleme50ldil (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝐢)
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧, ∧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐴,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐢(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐷(𝑑)   𝐸(𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdleme50ldil
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdlemef50.l . . 3 ≀ = (leβ€˜πΎ)
3 cdlemef50.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdlemef50.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdlemef50.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef50.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdlemef50.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemef50.d . . 3 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
10 cdlemef50.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
11 eqid 2731 . . 3 (LAutβ€˜πΎ) = (LAutβ€˜πΎ)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50laut 39722 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ (LAutβ€˜πΎ))
13 simpr 484 . . . . . . 7 ((𝑃 β‰  𝑄 ∧ Β¬ 𝑒 ≀ π‘Š) β†’ Β¬ 𝑒 ≀ π‘Š)
1413con2i 139 . . . . . 6 (𝑒 ≀ π‘Š β†’ Β¬ (𝑃 β‰  𝑄 ∧ Β¬ 𝑒 ≀ π‘Š))
1510cdleme31fv2 39568 . . . . . 6 ((𝑒 ∈ 𝐡 ∧ Β¬ (𝑃 β‰  𝑄 ∧ Β¬ 𝑒 ≀ π‘Š)) β†’ (πΉβ€˜π‘’) = 𝑒)
1614, 15sylan2 592 . . . . 5 ((𝑒 ∈ 𝐡 ∧ 𝑒 ≀ π‘Š) β†’ (πΉβ€˜π‘’) = 𝑒)
1716ex 412 . . . 4 (𝑒 ∈ 𝐡 β†’ (𝑒 ≀ π‘Š β†’ (πΉβ€˜π‘’) = 𝑒))
1817rgen 3062 . . 3 βˆ€π‘’ ∈ 𝐡 (𝑒 ≀ π‘Š β†’ (πΉβ€˜π‘’) = 𝑒)
1918a1i 11 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆ€π‘’ ∈ 𝐡 (𝑒 ≀ π‘Š β†’ (πΉβ€˜π‘’) = 𝑒))
20 cdleme50ldil.i . . . 4 𝐢 = ((LDilβ€˜πΎ)β€˜π‘Š)
211, 2, 6, 11, 20isldil 39285 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐢 ↔ (𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘’ ∈ 𝐡 (𝑒 ≀ π‘Š β†’ (πΉβ€˜π‘’) = 𝑒))))
22213ad2ant1 1132 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝐹 ∈ 𝐢 ↔ (𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘’ ∈ 𝐡 (𝑒 ≀ π‘Š β†’ (πΉβ€˜π‘’) = 𝑒))))
2312, 19, 22mpbir2and 710 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  β¦‹csb 3894  ifcif 4529   class class class wbr 5149   ↦ cmpt 5232  β€˜cfv 6544  β„©crio 7367  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LAutclaut 39160  LDilcldil 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279
This theorem is referenced by:  cdleme50ltrn  39732
  Copyright terms: Public domain W3C validator