| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50ldil | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
| cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
| cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| cdleme50ldil.i | ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdleme50ldil | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemef50.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemef50.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemef50.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemef50.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemef50.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemef50.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemef50.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemef50.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemefs50.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemef50.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | eqid 2734 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50laut 40483 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ (LAut‘𝐾)) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊) → ¬ 𝑒 ≤ 𝑊) | |
| 14 | 13 | con2i 139 | . . . . . 6 ⊢ (𝑒 ≤ 𝑊 → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) |
| 15 | 10 | cdleme31fv2 40329 | . . . . . 6 ⊢ ((𝑒 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) → (𝐹‘𝑒) = 𝑒) |
| 16 | 14, 15 | sylan2 593 | . . . . 5 ⊢ ((𝑒 ∈ 𝐵 ∧ 𝑒 ≤ 𝑊) → (𝐹‘𝑒) = 𝑒) |
| 17 | 16 | ex 412 | . . . 4 ⊢ (𝑒 ∈ 𝐵 → (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
| 18 | 17 | rgen 3052 | . . 3 ⊢ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒) |
| 19 | 18 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
| 20 | cdleme50ldil.i | . . . 4 ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) | |
| 21 | 1, 2, 6, 11, 20 | isldil 40046 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
| 22 | 21 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
| 23 | 12, 19, 22 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ⦋csb 3879 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6540 ℩crio 7368 (class class class)co 7412 Basecbs 17228 lecple 17279 joincjn 18326 meetcmee 18327 Atomscatm 39198 HLchlt 39285 LHypclh 39920 LAutclaut 39921 LDilcldil 40036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-riotaBAD 38888 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-undef 8279 df-map 8849 df-proset 18309 df-poset 18328 df-plt 18343 df-lub 18359 df-glb 18360 df-join 18361 df-meet 18362 df-p0 18438 df-p1 18439 df-lat 18445 df-clat 18512 df-oposet 39111 df-ol 39113 df-oml 39114 df-covers 39201 df-ats 39202 df-atl 39233 df-cvlat 39257 df-hlat 39286 df-llines 39434 df-lplanes 39435 df-lvols 39436 df-lines 39437 df-psubsp 39439 df-pmap 39440 df-padd 39732 df-lhyp 39924 df-laut 39925 df-ldil 40040 |
| This theorem is referenced by: cdleme50ltrn 40493 |
| Copyright terms: Public domain | W3C validator |