![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50ldil | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdleme50ldil.i | ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdleme50ldil | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef50.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemef50.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemef50.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemef50.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemef50.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemef50.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemef50.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemef50.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemefs50.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemef50.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
11 | eqid 2728 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50laut 40014 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ (LAut‘𝐾)) |
13 | simpr 484 | . . . . . . 7 ⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊) → ¬ 𝑒 ≤ 𝑊) | |
14 | 13 | con2i 139 | . . . . . 6 ⊢ (𝑒 ≤ 𝑊 → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) |
15 | 10 | cdleme31fv2 39860 | . . . . . 6 ⊢ ((𝑒 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) → (𝐹‘𝑒) = 𝑒) |
16 | 14, 15 | sylan2 592 | . . . . 5 ⊢ ((𝑒 ∈ 𝐵 ∧ 𝑒 ≤ 𝑊) → (𝐹‘𝑒) = 𝑒) |
17 | 16 | ex 412 | . . . 4 ⊢ (𝑒 ∈ 𝐵 → (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
18 | 17 | rgen 3059 | . . 3 ⊢ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒) |
19 | 18 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
20 | cdleme50ldil.i | . . . 4 ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) | |
21 | 1, 2, 6, 11, 20 | isldil 39577 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
22 | 21 | 3ad2ant1 1131 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
23 | 12, 19, 22 | mpbir2and 712 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ⦋csb 3890 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 Basecbs 17173 lecple 17233 joincjn 18296 meetcmee 18297 Atomscatm 38729 HLchlt 38816 LHypclh 39451 LAutclaut 39452 LDilcldil 39567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-riotaBAD 38419 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-undef 8272 df-map 8840 df-proset 18280 df-poset 18298 df-plt 18315 df-lub 18331 df-glb 18332 df-join 18333 df-meet 18334 df-p0 18410 df-p1 18411 df-lat 18417 df-clat 18484 df-oposet 38642 df-ol 38644 df-oml 38645 df-covers 38732 df-ats 38733 df-atl 38764 df-cvlat 38788 df-hlat 38817 df-llines 38965 df-lplanes 38966 df-lvols 38967 df-lines 38968 df-psubsp 38970 df-pmap 38971 df-padd 39263 df-lhyp 39455 df-laut 39456 df-ldil 39571 |
This theorem is referenced by: cdleme50ltrn 40024 |
Copyright terms: Public domain | W3C validator |