Proof of Theorem cdleme48gfv
Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
2 | | simprl 768 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑃 ≠ 𝑄) |
3 | | simplr 766 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
4 | | simprr 770 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ¬ 𝑋 ≤ 𝑊) |
5 | 3, 4 | jca 512 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
6 | | cdlemef46g.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
7 | | cdlemef46g.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemef46g.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
9 | | cdlemef46g.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
10 | | cdlemef46g.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
11 | | cdlemef46g.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | cdlemef46g.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
13 | | cdlemef46g.d |
. . . 4
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
14 | | cdlemefs46g.e |
. . . 4
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
15 | | cdlemef46g.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
16 | | cdlemef46.v |
. . . 4
⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
17 | | cdlemef46.n |
. . . 4
⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
18 | | cdlemefs46.o |
. . . 4
⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) |
19 | | cdlemef46.g |
. . . 4
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) |
20 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | cdleme48gfv1 38550 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐺‘(𝐹‘𝑋)) = 𝑋) |
21 | 1, 2, 5, 20 | syl12anc 834 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐺‘(𝐹‘𝑋)) = 𝑋) |
22 | 15 | cdleme31fv2 38407 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
23 | 22 | adantll 711 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
24 | | simplr 766 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
25 | 23, 24 | eqeltrd 2839 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) ∈ 𝐵) |
26 | | simpr 485 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) |
27 | | necom 2997 |
. . . . . . 7
⊢ (𝑄 ≠ 𝑃 ↔ 𝑃 ≠ 𝑄) |
28 | 27 | a1i 11 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑄 ≠ 𝑃 ↔ 𝑃 ≠ 𝑄)) |
29 | 23 | breq1d 5084 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝐹‘𝑋) ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) |
30 | 29 | notbid 318 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (¬ (𝐹‘𝑋) ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
31 | 28, 30 | anbi12d 631 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑄 ≠ 𝑃 ∧ ¬ (𝐹‘𝑋) ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
32 | 26, 31 | mtbird 325 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ¬ (𝑄 ≠ 𝑃 ∧ ¬ (𝐹‘𝑋) ≤ 𝑊)) |
33 | 19 | cdleme31fv2 38407 |
. . . 4
⊢ (((𝐹‘𝑋) ∈ 𝐵 ∧ ¬ (𝑄 ≠ 𝑃 ∧ ¬ (𝐹‘𝑋) ≤ 𝑊)) → (𝐺‘(𝐹‘𝑋)) = (𝐹‘𝑋)) |
34 | 25, 32, 33 | syl2anc 584 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐺‘(𝐹‘𝑋)) = (𝐹‘𝑋)) |
35 | 34, 23 | eqtrd 2778 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐺‘(𝐹‘𝑋)) = 𝑋) |
36 | 21, 35 | pm2.61dan 810 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑋 ∈ 𝐵) → (𝐺‘(𝐹‘𝑋)) = 𝑋) |