HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjval Structured version   Visualization version   GIF version

Theorem shjval 31028
Description: Value of join in S. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
shjval ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))

Proof of Theorem shjval
StepHypRef Expression
1 shss 30887 . 2 (𝐴S𝐴 ⊆ ℋ)
2 shss 30887 . 2 (𝐵S𝐵 ⊆ ℋ)
3 sshjval 31027 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
41, 2, 3syl2an 595 1 ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cun 3938  wss 3940  cfv 6533  (class class class)co 7401  chba 30596   S csh 30605  cort 30607   chj 30610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-hilex 30676
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-sh 30884  df-chj 30987
This theorem is referenced by:  chjval  31029  shjcom  31035  shlej1  31037  shunssji  31046  shlub  31091  shjshsi  31169
  Copyright terms: Public domain W3C validator