HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjvali Structured version   Visualization version   GIF version

Theorem chjvali 29847
Description: Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
chjval.1 𝐴C
chjval.2 𝐵C
Assertion
Ref Expression
chjvali (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))

Proof of Theorem chjvali
StepHypRef Expression
1 chjval.1 . 2 𝐴C
2 chjval.2 . 2 𝐵C
3 chjval 29846 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
41, 2, 3mp2an 689 1 (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  cun 3894  cfv 6465  (class class class)co 7316   C cch 29423  cort 29424   chj 29427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-hilex 29493
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-sh 29701  df-ch 29715  df-chj 29804
This theorem is referenced by:  chj0i  29949  sshhococi  30040
  Copyright terms: Public domain W3C validator