HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjvali Structured version   Visualization version   GIF version

Theorem chjvali 31282
Description: Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
chjval.1 𝐴C
chjval.2 𝐵C
Assertion
Ref Expression
chjvali (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))

Proof of Theorem chjvali
StepHypRef Expression
1 chjval.1 . 2 𝐴C
2 chjval.2 . 2 𝐵C
3 chjval 31281 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
41, 2, 3mp2an 692 1 (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cun 3912  cfv 6511  (class class class)co 7387   C cch 30858  cort 30859   chj 30862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sh 31136  df-ch 31150  df-chj 31239
This theorem is referenced by:  chj0i  31384  sshhococi  31475
  Copyright terms: Public domain W3C validator