| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjvali | Structured version Visualization version GIF version | ||
| Description: Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chjval.1 | ⊢ 𝐴 ∈ Cℋ |
| chjval.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chjvali | ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chjval.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjval.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
| 3 | chjval 31332 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ‘cfv 6481 (class class class)co 7346 Cℋ cch 30909 ⊥cort 30910 ∨ℋ chj 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sh 31187 df-ch 31201 df-chj 31290 |
| This theorem is referenced by: chj0i 31435 sshhococi 31526 |
| Copyright terms: Public domain | W3C validator |