HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjvali Structured version   Visualization version   GIF version

Theorem chjvali 29280
Description: Value of join in C. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
chjval.1 𝐴C
chjval.2 𝐵C
Assertion
Ref Expression
chjvali (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))

Proof of Theorem chjvali
StepHypRef Expression
1 chjval.1 . 2 𝐴C
2 chjval.2 . 2 𝐵C
3 chjval 29279 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
41, 2, 3mp2an 692 1 (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2113  cun 3839  cfv 6333  (class class class)co 7164   C cch 28856  cort 28857   chj 28860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-hilex 28926
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-sh 29134  df-ch 29148  df-chj 29237
This theorem is referenced by:  chj0i  29382  sshhococi  29473
  Copyright terms: Public domain W3C validator