Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chjvali | Structured version Visualization version GIF version |
Description: Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chjval.1 | ⊢ 𝐴 ∈ Cℋ |
chjval.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chjvali | ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chjval.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | chjval.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
3 | chjval 29846 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∪ cun 3894 ‘cfv 6465 (class class class)co 7316 Cℋ cch 29423 ⊥cort 29424 ∨ℋ chj 29427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-hilex 29493 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-sh 29701 df-ch 29715 df-chj 29804 |
This theorem is referenced by: chj0i 29949 sshhococi 30040 |
Copyright terms: Public domain | W3C validator |