Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr0vtx Structured version   Visualization version   GIF version

Theorem clnbgr0vtx 47840
Description: In a null graph (with no vertices), all closed neighborhoods are empty. (Contributed by AV, 15-Nov-2020.)
Assertion
Ref Expression
clnbgr0vtx ((Vtx‘𝐺) = ∅ → (𝐺 ClNeighbVtx 𝐾) = ∅)

Proof of Theorem clnbgr0vtx
StepHypRef Expression
1 nel02 4305 . . 3 ((Vtx‘𝐺) = ∅ → ¬ 𝐾 ∈ (Vtx‘𝐺))
2 df-nel 3031 . . 3 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
31, 2sylibr 234 . 2 ((Vtx‘𝐺) = ∅ → 𝐾 ∉ (Vtx‘𝐺))
4 eqid 2730 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
54clnbgrnvtx0 47832 . 2 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝐾) = ∅)
63, 5syl 17 1 ((Vtx‘𝐺) = ∅ → (𝐺 ClNeighbVtx 𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnel 3030  c0 4299  cfv 6514  (class class class)co 7390  Vtxcvtx 28930   ClNeighbVtx cclnbgr 47823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-clnbgr 47824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator