![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgr0edg | Structured version Visualization version GIF version |
Description: In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.) |
Ref | Expression |
---|---|
clnbgr0edg | ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | dfclnbgr4 47698 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾))) |
3 | 2 | adantl 481 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾))) |
4 | nbgr0edg 29392 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) | |
5 | 4 | adantr 480 | . . 3 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐾) = ∅) |
6 | 5 | uneq2d 4191 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)) = ({𝐾} ∪ ∅)) |
7 | un0 4417 | . . 3 ⊢ ({𝐾} ∪ ∅) = {𝐾} | |
8 | 7 | a1i 11 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ ∅) = {𝐾}) |
9 | 3, 6, 8 | 3eqtrd 2784 | 1 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∅c0 4352 {csn 4648 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 Edgcedg 29082 NeighbVtx cnbgr 29367 ClNeighbVtx cclnbgr 47692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-nbgr 29368 df-clnbgr 47693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |