Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr0edg Structured version   Visualization version   GIF version

Theorem clnbgr0edg 47810
Description: In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.)
Assertion
Ref Expression
clnbgr0edg (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾})

Proof of Theorem clnbgr0edg
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21dfclnbgr4 47798 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)))
32adantl 481 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)))
4 nbgr0edg 29260 . . . 4 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)
54adantr 480 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐾) = ∅)
65uneq2d 4127 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)) = ({𝐾} ∪ ∅))
7 un0 4353 . . 3 ({𝐾} ∪ ∅) = {𝐾}
87a1i 11 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ ∅) = {𝐾})
93, 6, 83eqtrd 2768 1 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950   NeighbVtx cnbgr 29235   ClNeighbVtx cclnbgr 47792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-nbgr 29236  df-clnbgr 47793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator