| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgr0edg | Structured version Visualization version GIF version | ||
| Description: In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgr0edg | ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | dfclnbgr4 47838 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾))) |
| 3 | 2 | adantl 481 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾))) |
| 4 | nbgr0edg 29336 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 6 | 5 | uneq2d 4143 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)) = ({𝐾} ∪ ∅)) |
| 7 | un0 4369 | . . 3 ⊢ ({𝐾} ∪ ∅) = {𝐾} | |
| 8 | 7 | a1i 11 | . 2 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ ∅) = {𝐾}) |
| 9 | 3, 6, 8 | 3eqtrd 2774 | 1 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 Edgcedg 29026 NeighbVtx cnbgr 29311 ClNeighbVtx cclnbgr 47832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-nbgr 29312 df-clnbgr 47833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |