Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgr0edg Structured version   Visualization version   GIF version

Theorem clnbgr0edg 47850
Description: In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.)
Assertion
Ref Expression
clnbgr0edg (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾})

Proof of Theorem clnbgr0edg
StepHypRef Expression
1 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21dfclnbgr4 47838 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)))
32adantl 481 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)))
4 nbgr0edg 29336 . . . 4 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)
54adantr 480 . . 3 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝐾) = ∅)
65uneq2d 4143 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ (𝐺 NeighbVtx 𝐾)) = ({𝐾} ∪ ∅))
7 un0 4369 . . 3 ({𝐾} ∪ ∅) = {𝐾}
87a1i 11 . 2 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → ({𝐾} ∪ ∅) = {𝐾})
93, 6, 83eqtrd 2774 1 (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3924  c0 4308  {csn 4601  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  Edgcedg 29026   NeighbVtx cnbgr 29311   ClNeighbVtx cclnbgr 47832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-nbgr 29312  df-clnbgr 47833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator