MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem1 Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem1 29334
Description: Lemma 1 for clwlknf1oclwwlkn 29337. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
clwlknf1oclwwlknlem1 ((𝐢 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))

Proof of Theorem clwlknf1oclwwlknlem1
StepHypRef Expression
1 clwlkwlk 29032 . . 3 (𝐢 ∈ (ClWalksβ€˜πΊ) β†’ 𝐢 ∈ (Walksβ€˜πΊ))
2 wlkcpr 28886 . . . 4 (𝐢 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ))
3 eqid 2733 . . . . . . . 8 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
43wlkpwrd 28874 . . . . . . 7 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ))
5 lencl 14483 . . . . . . . . 9 ((2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ β„•0)
64, 5syl 17 . . . . . . . 8 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ β„•0)
7 wlklenvm1 28879 . . . . . . . . . . 11 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (β™―β€˜(1st β€˜πΆ)) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
87breq2d 5161 . . . . . . . . . 10 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) ↔ 1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1)))
9 1red 11215 . . . . . . . . . . . . 13 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ 1 ∈ ℝ)
10 nn0re 12481 . . . . . . . . . . . . 13 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ ℝ)
119, 9, 10leaddsub2d 11816 . . . . . . . . . . . 12 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) ↔ 1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1)))
12 1p1e2 12337 . . . . . . . . . . . . . 14 (1 + 1) = 2
1312breq1i 5156 . . . . . . . . . . . . 13 ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) ↔ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
1413biimpi 215 . . . . . . . . . . . 12 ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
1511, 14syl6bir 254 . . . . . . . . . . 11 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ (1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
164, 5, 153syl 18 . . . . . . . . . 10 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
178, 16sylbid 239 . . . . . . . . 9 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
1817imp 408 . . . . . . . 8 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
19 ige2m1fz 13591 . . . . . . . 8 (((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 ∧ 2 ≀ (β™―β€˜(2nd β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ))))
206, 18, 19syl2an2r 684 . . . . . . 7 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ))))
21 pfxlen 14633 . . . . . . 7 (((2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ)))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
224, 20, 21syl2an2r 684 . . . . . 6 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
237eqcomd 2739 . . . . . . 7 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) = (β™―β€˜(1st β€˜πΆ)))
2423adantr 482 . . . . . 6 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) = (β™―β€˜(1st β€˜πΆ)))
2522, 24eqtrd 2773 . . . . 5 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))
2625ex 414 . . . 4 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
272, 26sylbi 216 . . 3 (𝐢 ∈ (Walksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
281, 27syl 17 . 2 (𝐢 ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
2928imp 408 1 ((𝐢 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  0cc0 11110  1c1 11111   + caddc 11113   ≀ cle 11249   βˆ’ cmin 11444  2c2 12267  β„•0cn0 12472  ...cfz 13484  β™―chash 14290  Word cword 14464   prefix cpfx 14620  Vtxcvtx 28256  Walkscwlks 28853  ClWalkscclwlks 29027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-substr 14591  df-pfx 14621  df-wlks 28856  df-clwlks 29028
This theorem is referenced by:  clwlknf1oclwwlkn  29337
  Copyright terms: Public domain W3C validator