MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem1 Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem1 29768
Description: Lemma 1 for clwlknf1oclwwlkn 29771. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
clwlknf1oclwwlknlem1 ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶)))

Proof of Theorem clwlknf1oclwwlknlem1
StepHypRef Expression
1 clwlkwlk 29466 . . 3 (𝐶 ∈ (ClWalks‘𝐺) → 𝐶 ∈ (Walks‘𝐺))
2 wlkcpr 29320 . . . 4 (𝐶 ∈ (Walks‘𝐺) ↔ (1st𝐶)(Walks‘𝐺)(2nd𝐶))
3 eqid 2731 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkpwrd 29308 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (2nd𝐶) ∈ Word (Vtx‘𝐺))
5 lencl 14490 . . . . . . . . 9 ((2nd𝐶) ∈ Word (Vtx‘𝐺) → (♯‘(2nd𝐶)) ∈ ℕ0)
64, 5syl 17 . . . . . . . 8 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(2nd𝐶)) ∈ ℕ0)
7 wlklenvm1 29313 . . . . . . . . . . 11 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(1st𝐶)) = ((♯‘(2nd𝐶)) − 1))
87breq2d 5160 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
9 1red 11222 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → 1 ∈ ℝ)
10 nn0re 12488 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → (♯‘(2nd𝐶)) ∈ ℝ)
119, 9, 10leaddsub2d 11823 . . . . . . . . . . . 12 ((♯‘(2nd𝐶)) ∈ ℕ0 → ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
12 1p1e2 12344 . . . . . . . . . . . . . 14 (1 + 1) = 2
1312breq1i 5155 . . . . . . . . . . . . 13 ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 2 ≤ (♯‘(2nd𝐶)))
1413biimpi 215 . . . . . . . . . . . 12 ((1 + 1) ≤ (♯‘(2nd𝐶)) → 2 ≤ (♯‘(2nd𝐶)))
1511, 14syl6bir 254 . . . . . . . . . . 11 ((♯‘(2nd𝐶)) ∈ ℕ0 → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
164, 5, 153syl 18 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
178, 16sylbid 239 . . . . . . . . 9 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → 2 ≤ (♯‘(2nd𝐶))))
1817imp 406 . . . . . . . 8 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → 2 ≤ (♯‘(2nd𝐶)))
19 ige2m1fz 13598 . . . . . . . 8 (((♯‘(2nd𝐶)) ∈ ℕ0 ∧ 2 ≤ (♯‘(2nd𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
206, 18, 19syl2an2r 682 . . . . . . 7 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
21 pfxlen 14640 . . . . . . 7 (((2nd𝐶) ∈ Word (Vtx‘𝐺) ∧ ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶)))) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = ((♯‘(2nd𝐶)) − 1))
224, 20, 21syl2an2r 682 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = ((♯‘(2nd𝐶)) − 1))
237eqcomd 2737 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2423adantr 480 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2522, 24eqtrd 2771 . . . . 5 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶)))
2625ex 412 . . . 4 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶))))
272, 26sylbi 216 . . 3 (𝐶 ∈ (Walks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶))))
281, 27syl 17 . 2 (𝐶 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶))))
2928imp 406 1 ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) prefix ((♯‘(2nd𝐶)) − 1))) = (♯‘(1st𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  0cc0 11116  1c1 11117   + caddc 11119  cle 11256  cmin 11451  2c2 12274  0cn0 12479  ...cfz 13491  chash 14297  Word cword 14471   prefix cpfx 14627  Vtxcvtx 28690  Walkscwlks 29287  ClWalkscclwlks 29461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-substr 14598  df-pfx 14628  df-wlks 29290  df-clwlks 29462
This theorem is referenced by:  clwlknf1oclwwlkn  29771
  Copyright terms: Public domain W3C validator