MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem1 Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem1 29323
Description: Lemma 1 for clwlknf1oclwwlkn 29326. (Contributed by AV, 26-May-2022.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
clwlknf1oclwwlknlem1 ((𝐢 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))

Proof of Theorem clwlknf1oclwwlknlem1
StepHypRef Expression
1 clwlkwlk 29021 . . 3 (𝐢 ∈ (ClWalksβ€˜πΊ) β†’ 𝐢 ∈ (Walksβ€˜πΊ))
2 wlkcpr 28875 . . . 4 (𝐢 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ))
3 eqid 2732 . . . . . . . 8 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
43wlkpwrd 28863 . . . . . . 7 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ))
5 lencl 14479 . . . . . . . . 9 ((2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ β„•0)
64, 5syl 17 . . . . . . . 8 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ β„•0)
7 wlklenvm1 28868 . . . . . . . . . . 11 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (β™―β€˜(1st β€˜πΆ)) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
87breq2d 5159 . . . . . . . . . 10 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) ↔ 1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1)))
9 1red 11211 . . . . . . . . . . . . 13 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ 1 ∈ ℝ)
10 nn0re 12477 . . . . . . . . . . . . 13 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ (β™―β€˜(2nd β€˜πΆ)) ∈ ℝ)
119, 9, 10leaddsub2d 11812 . . . . . . . . . . . 12 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) ↔ 1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1)))
12 1p1e2 12333 . . . . . . . . . . . . . 14 (1 + 1) = 2
1312breq1i 5154 . . . . . . . . . . . . 13 ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) ↔ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
1413biimpi 215 . . . . . . . . . . . 12 ((1 + 1) ≀ (β™―β€˜(2nd β€˜πΆ)) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
1511, 14syl6bir 253 . . . . . . . . . . 11 ((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 β†’ (1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
164, 5, 153syl 18 . . . . . . . . . 10 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
178, 16sylbid 239 . . . . . . . . 9 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ))))
1817imp 407 . . . . . . . 8 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ 2 ≀ (β™―β€˜(2nd β€˜πΆ)))
19 ige2m1fz 13587 . . . . . . . 8 (((β™―β€˜(2nd β€˜πΆ)) ∈ β„•0 ∧ 2 ≀ (β™―β€˜(2nd β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ))))
206, 18, 19syl2an2r 683 . . . . . . 7 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ))))
21 pfxlen 14629 . . . . . . 7 (((2nd β€˜πΆ) ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) ∈ (0...(β™―β€˜(2nd β€˜πΆ)))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
224, 20, 21syl2an2r 683 . . . . . 6 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))
237eqcomd 2738 . . . . . . 7 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) = (β™―β€˜(1st β€˜πΆ)))
2423adantr 481 . . . . . 6 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1) = (β™―β€˜(1st β€˜πΆ)))
2522, 24eqtrd 2772 . . . . 5 (((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))
2625ex 413 . . . 4 ((1st β€˜πΆ)(Walksβ€˜πΊ)(2nd β€˜πΆ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
272, 26sylbi 216 . . 3 (𝐢 ∈ (Walksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
281, 27syl 17 . 2 (𝐢 ∈ (ClWalksβ€˜πΊ) β†’ (1 ≀ (β™―β€˜(1st β€˜πΆ)) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ))))
2928imp 407 1 ((𝐢 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜πΆ))) β†’ (β™―β€˜((2nd β€˜πΆ) prefix ((β™―β€˜(2nd β€˜πΆ)) βˆ’ 1))) = (β™―β€˜(1st β€˜πΆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  0cc0 11106  1c1 11107   + caddc 11109   ≀ cle 11245   βˆ’ cmin 11440  2c2 12263  β„•0cn0 12468  ...cfz 13480  β™―chash 14286  Word cword 14460   prefix cpfx 14616  Vtxcvtx 28245  Walkscwlks 28842  ClWalkscclwlks 29016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587  df-pfx 14617  df-wlks 28845  df-clwlks 29017
This theorem is referenced by:  clwlknf1oclwwlkn  29326
  Copyright terms: Public domain W3C validator